We discuss target detection in LADAR intensity images. Thirteen features, eleven of which come from an asymmetric co-occurrence matrix, are extracted from region-of-interest windows in each image. Two methods of feature selection are applied to the extracted vectors. Random selection leads to a pair of selected features for a nearest-neighbor rule (1-nn) detector. Extended back-propagation leads to six selected features using a modified multilayered perceptron (MLP) network. The 1-nn detector achieves a test-error rate of about 16% at a false-alarm rate of 8%. The MLP has a test-error rate of about 12% with a false-alarm rate of 6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.