Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.
40Characterizing the transcriptome of individual cells is fundamental to understanding complex 41 biological systems. We describe a droplet-based system that enables 3' mRNA counting of up 56peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/065912 doi: bioRxiv preprint first posted online 84 RESULTS 86Droplet-based platform enables barcoding of tens of thousands of cells 88The scRNA-seq microfluidics platform builds on the GemCode ® technology, which has 89 been used for genome haplotyping, structural variant analysis and de novo assembly of a 90human genome [10][11][12] . The core of the technology is a Gel bead in Emulsion (GEM). GEM 91 peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/065912 doi: bioRxiv preprint first posted online 5 generation takes place in an 8-channel microfluidic chip that encapsulates single gel beads at ~80% fill rate (Fig. 1a-c). Each gel bead is functionalized with barcoded oligonucleotides that 93 consist of: i) sequencing adapters and primers, ii) a 14bp barcode drawn from ~750,000 94 designed sequences to index GEMs, iii) a 10bp randomer to index molecules (unique molecular 95 identifier, UMI), and iv) an anchored 30bp oligo-dT to prime poly-adenylated RNA transcripts 96 (Fig. 1d). Within each microfluidic channel, ~100,000 GEMs are formed per ~6-min run, 97encapsulating thousands of cells in GEMs. Cells are loaded at a limiting dilution to minimize co- 98occurrence of multiple cells in the same GEM. 100Cell lysis begins immediately after encapsulation. Gel beads automatically dissolve to 101 release their oligonucleotides for reverse transcription of poly-adenylated RNAs. Each cDNA 102 molecule contains a UMI and shared barcode per GEM, and ends with a template switching 103 oligo at the 3' end (Fig. 1e). Next, the emulsion is broken and barcoded cDNA is pooled for 104PCR amplification, using primers complementary to the switch oligos and sequencing adapters. Methods, Fig. 1f). Briefly, 98-nt of Read1s were aligned against the union of human (hg19) 123peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/065912 doi: bioRxiv preprint first posted online 6 Based on the distribution of total UMI counts for each barcode (Online Methods), we 124 estimated that 1,012 GEMs contained cells, of which 482 and 538 contained reads that mapped 125 primarily to the human and mouse transcriptome, respectively (and will be referred to as human 126 and mouse GEMs) (Fig. 2a). >83% of UMI counts were associated with cell barcodes, 127indicating low background of cell-free RNA. Eight cell-containing GEMs had a substantial 128 fraction of human and mouse UMI counts (the UMI count is >1% of each species' UMI...
Plant scientists believe that transpiration-the motion of water from the soil, through a vascular plant, and into the air-occurs by a passive, wicking mechanism. This mechanism is described by the cohesion-tension theory: loss of water by evaporation reduces the pressure of the liquid water within the leaf relative to atmospheric pressure; this reduced pressure pulls liquid water out of the soil and up the xylem to maintain hydration. Strikingly, the absolute pressure of the water within the xylem is often negative, such that the liquid is under tension and is thermodynamically metastable with respect to the vapour phase. Qualitatively, this mechanism is the same as that which drives fluid through the synthetic wicks that are key elements in technologies for heat transfer, fuel cells and portable chemical systems. Quantitatively, the differences in pressure generated in plants to drive flow can be more than a hundredfold larger than those generated in synthetic wicks. Here we present the design and operation of a microfluidic system formed in a synthetic hydrogel. This synthetic 'tree' captures the main attributes of transpiration in plants: transduction of subsaturation in the vapour phase of water into negative pressures in the liquid phase, stabilization and flow of liquid water at large negative pressures (-1.0 MPa or lower), continuous heat transfer with the evaporation of liquid water at negative pressure, and continuous extraction of liquid water from subsaturated sources. This development opens the opportunity for technological uses of water under tension and for new experimental studies of the liquid state of water.
The bone marrow provides spatially and temporally variable signals that impact the behavior of hematopoietic stem cells (HSCs). While multiple biomolecular signals and bone marrow cell populations have been proposed as key regulators of HSC fate, new tools are required to probe their importance and mechanisms of action. Here, a novel method based on a microfluidic mixing platform to create small volume, 3D hydrogel constructs containing overlapping patterns of cell and matrix constituents inspired by the HSC niche is described. This approach is used to generate hydrogels containing opposing gradients of fluorescent microspheres, MC3T3-E1 osteoblasts, primary murine hematopoietic stem and progenitor cells (HSPCs), and combinations thereof in a manner independent of hydrogel density and cell/particle size. Three different analytical methods are described to characterize local properties of these hydrogels at multiple scales: 1) whole construct fluorescent analysis; 2) multi-photon imaging of individual cells within the construct; 3) retrieval of discrete sub-regions from the hydrogel post-culture. The approach reported here allows the creation of stable gradients of cell and material cues within a single, optically translucent 3D biomaterial to enable a range of investigations regarding how microenvironmental signals impact cell fate.
A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapair
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.