The production of micro-components in high quantities by means of cutting plays a central role in the area of metal forming. Generally, these components are manufactured with mechanical high speed presses with modified drive kinematics which provide stroke rates of up to 4,000 strokes per minute (spm) and punching forces of up to 2,000 kN. Depending on the application, this may result in a significant oversizing both in terms of maximum cutting force and size of the punching machine. This leads to higher production costs due to increased space and energy consumption which could be improved by a better adaptability of the machine to the process. To fulfill both requirements, a prototype of an electromagnetically driven punch machine with highly efficient resonance drive and miniaturization potential is proposed in this paper. Electromagnetic actuators induce oscillations of a mass-spring system at its resonance frequency by storing potential energy in the system’s springs. An advantage of the resonance propulsion is that only magnets with low nominal force are needed, since only small forces are necessary during the swing-up. The resulting oscillation frequency can be adjusted for the given task by using a modular concept with exchangeable springs. After discussing the concept and essentials, the requirements and constraints are pointed out. Subsequently, a model of the system is created and an energy based bang-bang control concept is implemented utilizing model based filter techniques. Based on the simulation results a test rig was built and obtained measurements were compared to the simulation data. The test rig provides stroke rates up to 2,000 spm and cutting forces up to 20 kN. A prototype, which will be able to achieve higher stroke rates and cutting forces will be part of future work.
Kurzfassung
Beim Scherschneiden entstehen Schwingungen, welche auf die schlagartige Entspannung der vorgespannten Pressenstruktur zum Zeitpunkt der Materialtrennung zurückzuführen sind. Die entstehenden Stößelschwingungen führen zu einer Erhöhung des Reibweges zwischen dem Schneidstempel und dem Blechwerkstoff, was einen erhöhten Werkzeugverschleiß verursacht. In diesem Beitrag werden zwei Methoden zur Reduzierung der Stößelschwingungen erforscht. Ziel ist es, die Stößelschwingungen zu reduzieren und in Folge dessen den Verschleiß an Schneidstempeln zu minimieren.
Metall-Kunststoff-Verbunde (MKV) sind eine innovative Werkstoffklasse, mit der insbesondere im Bereich des Kraft- und Schienenfahrzeugbaus eine signifikante Gewichtseinsparung erzielt werden kann. Das Scherschneiden als trennendes Fertigungsverfahren erlaubt eine hohe Ausbringungsrate bei geringen bauteilbezogenen Kosten. In diesem Beitrag wird der Einfluss der durch Scherschneiden erzeugten Schnittflächen von MKV auf eine nachfolgende Bauteilbeanspruchung vorgestellt.
Metal-plastic composites (MKV) are an innovative class of materials by means of which a significant weight saving can be achieved, in particular in the area of power and rail vehicle construction. Shear cutting as a separating manufacturing process enables a high output rate with low component-related costs. This article presents the influence of cutting edges produced by shear cutting of MKV on a subsequent component stress.
Die Herstellung kleiner Bauteile mit Abmaßen von wenigen Millimetern erfolgt auf Schnellläuferpressen, deren Antriebskinematik gegenüber Exzenterpressen modifiziert ist, sich jedoch nicht in ihren Abmaßen von diesen unterscheiden. In einem aktuellen Forschungsvorhaben wurde eine miniaturisierte Schneidmaschine entwickelt, um das Missverhältnis von Maschinen- und Bauteilgröße sowie die daraus resultierenden technischen und wirtschaftlichen Nachteile zu reduzieren.
The production of components with dimensions of up to a few millimeters takes place on high-speed presses. The drive kinematics of these presses is modified from eccentric presses, but they do not differ in their dimensions. In a current research project, a miniaturized shear cutting machine was developed to reduce the disproportion of machine size and component size and the resulting technical and economic disadvantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.