Autonomous racing has increasingly become a research subject as it provides insights into dynamic, high-speed situations. One crucial aspect of handling these situations, especially in the presence of dynamic obstacles, is the generation of a collision-free trajectory that represents a safe behavior and is also competitive in the case of racing. We propose a local planning approach that generates such trajectories for a racing car on an oval race track by searching a spatiotemporal graph. A considerable challenge of search-based methods in a spatiotemporal domain is the curse of dimensionality. Therefore, we propose how a previously presented graph structure that is based on intervals instead of discrete values can be searched more efficiently without losing optimality by using a uniform-cost search strategy. We extend the search method to make it anytime-capable so that it can provide a suboptimal trajectory even if the search has to be terminated early. The graph-based planning approach allows us to apply a flexible cost function so that our approach can operate fully autonomously on an oval race track, including the pit lane. We present a cost function for oval racing and explain how the terms contribute to the desired behaviors. This is supported by results with a full-scale prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.