Abstract-Most of the recent advances in the design of highspeed wireless systems are based on information-theoretic principles that demonstrate how to efficiently transmit long data packets. However, the upcoming wireless systems, notably the 5G system, will need to support novel traffic types that use short packets. For example, short packets represent the most common form of traffic generated by sensors and other devices involved in Machine-toMachine (M2M) communications. Furthermore, there are emerging applications in which small packets are expected to carry critical information that should be received with low latency and ultrahigh reliability.Current wireless systems are not designed to support shortpacket transmissions. For example, the design of current systems relies on the assumption that the metadata (control information) is of negligible size compared to the actual information payload. Hence, transmitting metadata using heuristic methods does not affect the overall system performance. However, when the packets are short, metadata may be of the same size as the payload, and the conventional methods to transmit it may be highly suboptimal.In this article, we review recent advances in information theory, which provide the theoretical principles that govern the transmission of short packets. We then apply these principles to three exemplary scenarios (the two-way channel, the downlink broadcast channel, and the uplink random access channel), thereby illustrating how the transmission of control information can be optimized when the packets are short. The insights brought by these examples suggest that new principles are needed for the design of wireless protocols supporting short packets. These principles will have a direct impact on the system design.
Abstract-We investigate the maximal achievable rate for a given blocklength and error probability over quasi-static singleinput multiple-output (SIMO) fading channels. Under mild conditions on the channel gains, it is shown that the channel dispersion is zero regardless of whether the fading realizations are available at the transmitter and/or the receiver. The result follows from computationally and analytically tractable converse and achievability bounds. Through numerical evaluation, we verify that, in some scenarios, zero dispersion indeed entails fast convergence to outage capacity as the blocklength increases. In the example of a particular 1 × 2 SIMO Rician channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared to the blocklength required for an AWGN channel with the same capacity.
Abstract-This paper investigates the maximal achievable rate for a given blocklength and error probability over quasi-static multiple-input multiple-output (MIMO) fading channels, with and without channel state information (CSI) at the transmitter and/or the receiver. The principal finding is that outage capacity, despite being an asymptotic quantity, is a sharp proxy for the finiteblocklength fundamental limits of slow-fading channels. Specifically, the channel dispersion is shown to be zero regardless of whether the fading realizations are available at both transmitter and receiver, at only one of them, or at neither of them. These results follow from analytically tractable converse and achievability bounds. Numerical evaluation of these bounds verifies that zero dispersion may indeed imply fast convergence to the outage capacity as the blocklength increases. In the example of a particular 1×2 single-input multiple-output (SIMO) Rician fading channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared to the blocklength required for an AWGN channel with the same capacity. For this specific scenario, the coding/decoding schemes adopted in the LTE-Advanced standard are benchmarked against the finite-blocklength achievability and converse bounds.
Abstract-Motivated by the current interest in ultra-reliable, low-latency, machine-type communication systems, we investigate the tradeoff between reliability, throughput, and latency in the transmission of information over multiple-antenna Rayleigh blockfading channels. Specifically, we obtain finite-blocklength, finite-SNR upper and lower bounds on the maximum coding rate achievable over such channels for a given constraint on the packet error probability. Numerical evidence suggests that our bounds delimit tightly the maximum coding rate already for short blocklengths (packets of about 100 symbols). Furthermore, our bounds reveal the existence of a tradeoff between the rate gain obtainable by spreading each codeword over all available time-frequency-spatial degrees of freedom, and the rate loss caused by the need of estimating the fading coefficients over these degrees of freedom. In particular, our bounds allow us to determine the optimal number of transmit antennas and the optimal number of time-frequency diversity branches that maximize the rate. Finally, we show that infinite-blocklength performance metrics such as the ergodic capacity and the outage capacity yield inaccurate throughput estimates.
It is demonstrated that doubling the sampling rate recovers some of the loss in capacity incurred on the bandlimited Gaussian channel with a one-bit output quantizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.