<p><strong>Abstract.</strong> There is an ongoing discussion whether <i>n</i>-alkane biomarkers – and organic matter (OM) from loess in general – reflect a syn-sedimentary paleoenvironmental and paleoclimate signal or whether they are significantly a post-sedimentary feature contaminated by root-derived OM. We present first radiocarbon data for the <i>n</i>-alkane fraction of lipid extracts and for the first time luminescence ages for the Middle to Late Weichselian loess-paleosol sequence of Gleina in Saxony, Germany. Comparison of these biomarker ages with sedimentation ages as assessed by optically stimulated luminescence (OSL) dating shows that one <i>n</i>-alkane sample features a syn-sedimentary age (<sup>14</sup>C: 29.2 ± 1.4 kyr cal BP versus OSL: 27.3 ± 3.0 kyr). By contrast, the <sup>14</sup>C ages derived from the other <i>n</i>-alkane samples are clearly younger (20.3 ± 0.7 kyr cal BP, 22.1 ± 0.7 kyr cal BP and 29.8 ± 1.4 kyr cal BP) than the corresponding OSL ages (26.6 ± 3.1 kyr, 32.0 ± 3.5 kyr and 45.6 ± 5.3 kyr). This finding suggests that a post-sedimentary <i>n</i>-alkane contamination presumably by roots has occurred. <br><br> In order to estimate the post-sedimentary <i>n</i>-alkane contamination more quantitatively, we applied a <sup>14</sup>C mass balance calculation based on the measured pMC (percent modern carbon) values, the calculated syn-sedimentary pMC values and pMC values suspected to reflect likely time points of post-sedimentary contamination (current, modern, 3 kyr, 6 kyr and 9 kyr). Accordingly, current and modern root-contamination would account for up to 7%, a 3 kyr old root-contamination for up to 10%, and an Early and Middle Holocene root-contamination for up to 20% of the total sedimentary <i>n</i>-alkane pool. <br><br> We acknowledge and encourage that these first radiocarbon results need further confirmation both from other loess-paleosol sequences and for different biomarkers, e.g. carboxylic acids or alcohols as further lipid biomarkers.</p>
Asian ring-necked parakeets (Alexandrinus manillensis, formerly Psittacula krameri, hereafter RNP) first bred in Germany in 1969. Since then, RNP numbers increased in all three major German subpopulations (Rhineland, Rhine-Main, Rhine-Neckar) over the period 2003-2018. In the Rhine-Neckar region, the population increased to more than fivefold within only 15 years. Interestingly, there was no significant breeding range expansion of RNP in the period 2010-2018. In 2018, the total number of RNP in Germany amounted to >16,200 birds. Differences in RNP censuses between years were evident. Surprisingly, cold winters (extreme value, −13.7 °C) and cold weather conditions in the breeding season (coldest month average, −1.36 °C) were not able to explain between-year variation. This finding suggests that in general winter mortality is low - with exceptions for winters 2008/2009 and 2009/2010, and a population-relevant loss of broods is low in our study population. Surprisingly, the social behaviour in terms of spatio-temporal stability of roost sites could well explain positive and negative population trends. Years of spatially stable and regularly used roost sites seem to correlate with increasing population sizes. In contrast, known shifts of RNP among different roost sites or the formations of new roost sites by split are related to population stagnation or a decrease in numbers. Climate change may lead to further range expansion as cities not suitable yet for RNP may become so in the near future.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.