Light can play: Irradiation causes dramatic changes in the shape of rigid-rod polymers incorporating azobenzene photochromes in the main chain. The embedded photoswitches act as hinges, which upon light-induced isomerization lead to reversible shrinking and stretching of the polymer backbone (see scheme), resembling light-orchestrated macromolecular accordions.
Single strands of azobenzene main chain polymers exhibiting alkyl side chains can be largely and reversibly contracted and extended with light. We show that upon self-assembly in a thin layered film they act as "molecular zippers" that can be opened and closed with UV-and blue light, respectively. Simultaneously in situ recorded time-resolved X-ray diffraction and optical spectroscopy measurements, together with scanning force microscopy show that upon the light-induced E → Z isomerization of the main chain azobenzenes the layered film morphology remains, while the initially highly ordered alkyl side chains become disordered. Already the E → Z isomerization of about 20% of all azobenzene chromophores triggers a complete disorder of the alkyl chains. The kinetics of this partial amorphization of the film is about 18 times slower than the ensemble kinetics of the initial azobenzene photoisomerization. This is the first demonstration of a rigid main chain polymer film with reversibly photoswitchable side chain crystallinity.
Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing.
Synthetic rigid-rod polymers incorporating multiple azobenzene photoswitches in the backbone were deposited from solution onto a monolayer of octadecylamine covering the basal plane of graphite. Large contractions and extensions of the single macromolecules on the surface were induced by irradiation with UV and visible light, respectively, as visualized by scanning force microscopy. Upon contraction, the single polymer chains form more compact nanostructures and also may move across the surface, resembling a crawling movement. We attribute the efficiency of these processes to the low mechanical and electronic coupling between the surface and polymers, the high density of azobenzenes in their backbones, and their rigidity, allowing for maximized photodeformations. The visualization of on-surface motions of single macromolecules directly induced by light, as reported herein, could help promote the development of optomechanical nanosystems.
Lichtspiele: Lichteinstrahlung verursacht drastische Änderungen der Form stabförmiger Polymere mit Azobenzol‐Photochromen in der Hauptkette. Die eingebetteten Photoschalter wirken als molekulare Scharniere, die bei lichtinduzierter Isomerisierung zur reversiblen Schrumpfung und Streckung des Polymerrückgrats führen (siehe Schema); das System erinnert an ein lichtorchestriertes makromolekulares Akkordeon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.