The chondroitin sulfate proteoglycan neurocan is a major component of brain extracellular matrix during development. Neurocan is primarily synthesized by neurons and has the ability to interact with cell adhesion molecules involved in the regulation of cell migration and axonal growth. Within the first weeks postnatally, neurocan expression is strongly downregulated. To test whether neurocan is reexpressed in areas of axonal growth (sprouting) after brain injury, the time course of neurocan expression was analyzed in the denervated fascia dentata of the rat after entorhinal cortex lesion (12 hr; 1, 2, 4, and 10 d; 2 and 4 weeks; and 6 months after lesion). In the denervated zone, immunohistochemistry revealed neurocan-positive astrocytes by 2 d after lesion and a diffuse labeling of the extracellular matrix at all later time points. Electron microscopy confirmed the deposition of neurocan in the extracellular matrix compartment. In situ hybridization demonstrated a strong upregulation of neurocan mRNA within the denervated outer molecular layer 1 and 4 d after lesion. The combination of in situ hybridization with immunohistochemistry for glial fibrillary acidic protein demonstrated that the neurocan mRNA-expressing cells are astrocytes. These data demonstrate that neurocan is reexpressed in the injured brain. In contrast to the situation during development, astrocytes, but not neurons, express neurocan and enrich the extracellular matrix with this molecule. Similar to the situation during development, neurocan is expressed in an area of active axon growth, and it is suggested that neurocan acts to maintain the boundaries of the denervated fascia dentata after entorhinal cortex lesion.
The chondroitin sulphate proteoglycan brevican is one of the most abundant extracellular matrix molecules in the adult rat brain. It is primarily synthesized by astrocytes and is believed to influence astroglial motility during development and under certain pathological conditions. In order to study a potential role of brevican in the glial reaction after brain injury, its expression was analysed following entorhinal cortex lesion in rats (12 h, 1, 2, 4, 10, 14 and 28 days and 6 months post lesion). In situ hybridization and immunohistochemistry were employed to study brevican mRNA and protein, respectively, in the denervated outer molecular layer of the fascia dentata and at the lesion site. In both regions brevican mRNA was upregulated between 1 and 4 days post lesion. The combination of in situ hybridization with immunohistochemistry for glial fibrillary acidic protein demonstrated that many brevican mRNA-expressing cells are astrocytes. In the denervated zone of the fascia dentata, immunostaining for brevican was increased by 4 days, reached a maximum by 4 weeks and remained detectable up to 6 months post lesion. Electron microscopic immunocytochemistry showed that brevican is a component of the extracellular matrix compartment. At the lesion site a similar time course of brevican upregulation was observed. These data demonstrate that brevican is upregulated in areas of brain damage as well as in areas denervated by a lesion. They suggest a role of brevican in reactive gliosis and are compatible with the hypothesis that brevican is involved in the synaptic reorganization of denervated brain areas.
Synaptopodin is an actin-associated molecule essential for the formation of a spine apparatus in telencephalic spines. To study whether synaptopodin and the spine apparatus organelle are regulated under conditions of lesion-induced plasticity, synaptopodin and the spine apparatus were analyzed in granule cells of the rat fascia dentata following entorhinal denervation. Confocal microscopy was employed to quantify layer-specific changes in synaptopodin-immunoreactive puncta densities. Electron microscopy was used to quantify layer-specific changes in spine apparatus organelles. Within the denervated middle and outer molecular layers, the layers of deafferentation-induced spine loss, synaptogenesis, and spinogenesis, the density of synaptopodin puncta and the number of spine apparatuses decreased by 4 days postlesion and slowly recovered in parallel with spinogenesis by 180 days postlesion. Within the nondenervated inner molecular layer, the zone without deafferentation-induced spine loss, a rapid loss of synaptopodin puncta and spine apparatuses was also observed. In this layer, spine apparatus densities recovered by 14 days postlesion, in parallel with plastic remodeling at the synaptic level and the postlesional recovery of granule cell activity. These data demonstrate layer-specific changes in the distribution of synaptopodin and the spine apparatus organelle following partial denervation of granule cells: in the layer of spine loss, spine apparatus densities follow spine densities; in the layer of spine maintenance, however, spine apparatus densities appear to be regulated by other signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.