Thermal conductivity of rocks is typically measured on core samples and cannot be directly measured from logs. We have developed a method to estimate thermal conductivity from logging data, where the key parameter is rock elasticity. This will be relevant for the subsurface industry. Present models for thermal conductivity are typically based primarily on porosity and are limited by inherent constraints and inadequate characterization of the rock texture and can therefore be inaccurate. Provided known or estimated mineralogy, we have developed a theoretical model for prediction of thermal conductivity with application to sandstones. Input parameters are derived from standard logging campaigns through conventional log interpretation. The model is formulated from a simplified rock cube enclosed in a unit volume, where a 1D heat flow passes through constituents in three parallel heat paths: solid, fluid, and solid-fluid in series. The cross section of each path perpendicular to the heat flow represents the rock texture: (1) The cross section with heat transfer through the solid alone is limited by grain contacts, and it is equal to the area governing the material stiffness and quantified through Biot's coefficient. (2) The cross section with heat transfer through the fluid alone is equal to the area governing fluid flow in the same direction and quantified by a factor analogous to Kozeny's factor for permeability. (3) The residual cross section involves the residual constituents in the solid-fluid heat path. By using laboratory data for outcrop sandstones and well-log data from a Triassic sandstone formation in Denmark, we compared measured thermal conductivity with our model predictions as well as to the more conventional porosity-based geometric mean. For outcrop material, we find good agreement with model predictions from our work and with the geometric mean, whereas when using well-log data, our model predictions indicate better agreement.
Development of high-pressure, high-temperature (HPHT) petroleum reservoirs situated at depths exceeding 5 km and in situ temperature of 170 °C increases the demand for theories and supporting experimental data capable of describing temperature effects on rock stiffness. With the intention of experimentally investigating temperature effects on stiffness properties, we investigated three sandstones from the deep North Sea Basin. As the North Sea Basin is presently undergoing substantial subsidence, we assumed that studied reservoir sandstones have never experienced higher temperature than in situ. We measured ultrasonic velocities in a low- and high-stress regime, and used mass density and stress–strain curves to derive, respectively, dynamic and static elastic moduli. We found that in both regimes, the dry sandstones stiffens with increasing testing temperature and assign expansion of minerals as a controlling mechanism. In the low-stress regime with only partial microcrack closure, we propose closure of microcracks as the stiffening mechanism. In the high-stress regime, we propose that thermal expansion of constituting minerals increases stress in grain contacts when the applied stress is high enough for conversion of thermal strain to thermal stress, thus leading to higher stiffness at in situ temperature. We then applied an extension of Biot’s effective stress equation including a non-isothermal term from thermoelastic theory and explain test results by adding boundary conditions to the equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.