During the development of continental rifts, strain accommodation shifts from border faults to intra-rift faults. This transition represents a critical process in the evolution of rift basins in the East African Rift, resulting in the focusing of strain and, ultimately, continental breakup. An analysis of fault and fluid systems in the younger than 7 Ma Natron and Magadi basins (Kenya-Tanzania border) reveals the transition as a complex interaction between plate flexure, magma emplacement, and magmatic volatile release. Rift basin development was investigated by analyzing fault systems, lava chronology, and geochemistry of spring systems. Results show that extensional strain in the 3 Ma Natron basin is primarily accommodated along the border fault, whereas results from the 7 Ma Magadi basin reveal a transition to intra-rift fault-dominated strain accommodation. The focusing of strain into a system of intra-rift faults in Magadi also occurred without oblique-style rifting, as is observed in Ethiopia, and border fault hanging-wall flexure can account for only a minor portion of faulting along the central rift axis (~12% or less). Instead, areas of high upper crustal strain coincide with the presence of hydrothermal springs that exhibit carbon isotopes and N 2-HeAr abundances indicating mixing between mantle-derived (magmatic) fluids and air saturated water. By comparing the distribution of fault-related strain and zones of magmatic fluid release in the 3 Ma Natron and 7 Ma Magadi basins, we present a conceptual model for the evolution of early-stage rifting. In the first 3 m.y., border faults accommodate the majority of regional extension (1.24-1.78 mm yr-1 in Natron at a slip rate ranging 1.93-3.56 mm yr-1), with a significant portion of intra-rift faulting (38%-96%) driven by flexure of the border fault hanging wall. Fluids released from magma bodies ascend along the border fault and then outward into nearby faults forming in the flexing hanging wall. By 7 m.y., there is a reduction in the amount of extension accommodated along the border fault (0.40-0.66 mm yr-1 in Magadi at a slip rate ranging from 0.62 to 1.32 mm yr-1), and regional extension is primarily accommodated in the intra-rift fault population (1.34-1.60 mm yr-1), with an accompanying transition of magmatic volatile release into the rift center. The focusing of magma toward the rift center and concomitant release of magmatic fluids into the flexing hanging wall provides a previously unrecognized mechanism that may help to weaken crust and assist the transition to intra-rift dominated strain accommodation. We conclude that the flow of magmatic fluids within fault systems plays an important role in weakening lithosphere and focusing upper crustal strain in early-stage continental rift basins prior to the establishment of magmatic segments.
We report N and He isotopic and relative abundance characteristics of volatiles emitted from two segments of the Central American volcanic arc. In Guatemala, delta15N values are positive (i.e., greater than air) and N2/He ratios are high (up to 25,000). In contrast, Costa Rican N2/He ratios are low (maximum 1483) and delta15N values are negative (minimum -3.0 per mil). The results identify shallow hemipelagic sediments, subducted into the Guatemalan mantle, as the transport medium for the heavy N. Mass balance arguments indicate that the subducted N is efficiently cycled to the atmosphere by arc volcanism. Therefore, the subduction zone acts as a "barrier" to input of sedimentary N to the deeper mantle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.