Today, a large number of people are manually grading and detecting defects in wooden lamellae in the parquet flooring industry. This paper investigates the possibility of using the ensemble methods random forests and boosting to automatically detect cracks using ultrasound-excited thermography and a variety of predictor variables. When friction occurs in thin cracks, they become warm and thus visible to a thermographic camera. Several image processing techniques have been used to suppress the noise and enhance probable cracks in the images. The most successful predictor variables captured the upper part of the heat distribution, such as the maximum temperature, kurtosis and percentile values 92-100 of the edge pixels. The texture in the images was captured by Completed Local Binary Pattern histograms and cracks were also segmented by background suppression and thresholding. The classification accuracy was significantly improved from previous research through added image processing, introduction of more predictors, and by using automated machine learning. The best ensemble methods reach an average classification accuracy of 0.8, which is very close to the authors' own manual attempt at separating the images (0.83).
This paper investigates the possibility to automatically match and recognize individual Scots pine (Pinus sylvestris L.) boards using a fusion of two feature detection methods. The first method denoted Block matching method, detects corners and matches square regions around these corners using a normalized Sum of Squared Differences (SSD) measure. The second method denoted the SURF (Speeded-Up Robust Features) matching method, matches SURF features between images (Bay et al., 2008). The fusion of the two feature detection methods improved the recognition rate of wooden floorboards substantially compared to the individual methods. Perfect matching accuracy was obtained for board pieces with more than 20 knots using high quality images. More than 90% matching accuracy was achieved for board pieces with more than 10 knots, using both high-and low quality images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.