Division of labor is a defining characteristic of social insects and fundamental to their ecological success. Many of the numerous tasks essential for the survival of the colony must be performed at a specific location. Consequently, spatial organization is an integral aspect of division of labor. The mechanisms organizing the spatial distribution of workers, separating inside and outside workers without central control, is an essential, but so far neglected aspect of division of labor. In this study, we investigate the behavioral mechanisms governing the spatial distribution of individual workers and its physiological underpinning in the ant Myrmica rubra. By investigating worker personalities we uncover position-associated behavioral syndromes. This context-independent and temporally stable set of correlated behaviors (positive association between movements and attraction towards light) could promote the basic separation between inside (brood tenders) and outside workers (foragers). These position-associated behavior syndromes are coupled with a high probability to perform tasks, located at the defined position, and a characteristic cuticular hydrocarbon profile. We discuss the potentially physiological causes for the observed behavioral syndromes and highlight how the study of animal personalities can provide new insights for the study of division of labor and self-organized processes in general.
Slave-making ants reduce the fitness of surrounding host colonies through regular raids, causing the loss of brood and frequently queen and worker death. Consequently, hosts developed defenses against slave raids such as specific recognition and aggression toward social parasites, and indeed, we show that host ants react more aggressively toward slavemakers than toward nonparasitic competitors. Permanent behavioral defenses can be costly, and if social parasite impact varies in time and space, inducible defenses, which are only expressed after slavemaker detection, can be adaptive. We demonstrate for the first time an induced defense against slave-making ants: Cues from the slavemaker Protomognathus americanus caused an unspecific but long-lasting behavioral response in Temnothorax host ants. A 5-min within-nest encounter with a dead slavemaker raised the aggression level in T. longispinosus host colonies. Contrarily, encounters with nonparasitic competitors did not elicit aggressive responses toward non-nestmates. Increased aggression can be adaptive if a slavemaker encounter reliably indicates a forthcoming attack and if aggression increases postraid survival. Host aggression was elevated over 3 days, showing the ability of host ants to remember parasite encounters. The response disappeared after 2 weeks, possibly because by then the benefits of increased aggression counterbalance potential costs associated with it.
Historically, bee regulatory risk assessment for pesticides has centred on the European honeybee (Apis mellifera), primarily due to its availability and adaptability to laboratory conditions. Recently, there have been efforts to develop a battery of laboratory toxicity tests for a range of non‐Apis bee species to directly assess the risk to them. However, it is not clear whether the substantial investment associated with the development and implementation of such routine screening will actually improve the level of protection of non‐Apis bees. We argue, using published acute toxicity data from a range of bee species and standard regulatory exposure scenarios, that current first‐tier honeybee acute risk assessment schemes utilised by regulatory authorities are protective of other bee species and further tests should be conducted only in cases of concern. We propose similar analysis of alternative exposure scenarios (chronic and developmental) once reliable data for non‐Apis bees are available to expand our approach to these scenarios. In addition, we propose that in silico (simulation) approaches can then be used to address population‐level effects in more field‐realistic scenarios. Such an approach could lead to a protective, but also workable, risk assessment for non‐Apis species while contributing to pollination security in agricultural landscapes around the globe. © 2019 Society of Chemical Industry
There is growing concern that some bee populations are in decline, potentially threatening pollination security in agricultural and non-agricultural landscapes. Among the numerous causes associated with this trend, nutritional stress resulting from a mismatch between bee nutritional needs and plant community provisioning has been suggested as one potential driver. To ease nutritional stress on bee populations in agricultural habitats, agri-environmental protection schemes aim to provide alternative nutritional resources for bee populations during times of need. However, such efforts have focused mainly on quantity (providing flowering plants) and timing (during flower-scarce periods), while largely ignoring the quality of the offered flower resources. In a first step to start addressing this information gap, we have used literature data to compile a comprehensive geographically explicit dataset on nectar quality (i.e., total sugar concentration), offered to bees both within fields (crop and weed species) as well as outside fields (wild species) around the globe. Social bees are particularly sensitive to nectar sugar concentrations, which directly impact calorie influx into the colony and consequently their fitness making it an important resource quality marker. We find that the total nectar sugar concentrations in general do not differ between the three plant communities studied. In contrast we find increased variability in nectar quality in the wild plant community compared to crop and weed community, which is likely explained by the increased phylogenetic diversity in this category of plants. In a second step we explore the influence of local habitat on nectar quality and its variability utilizing a detailed sunflower (Helianthus annuus L.) data set and find that geography has a small, but significant influence on these parameters. In a third step we identify crop groups (genera), which provide sub-optimal nectar resources for bees and suggest high quality alternatives as potential nectar supplements. In the long term this data set could serve as a starting point to systematically collect more quality characteristics of plant provided resources to bees, which ultimately can be utilized by scientist, regulators, NGOs and farmers to improve the flower resources offered to bees. We hope that ultimately this data will help to ease nutritional stress for bee populations and foster a data informed discussion about pollinator conservation in modern agricultural landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.