GlnK proteins regulate the active uptake of ammonium by Amt transport proteins by inserting their regulatory T-loops into the transport channels of the Amt trimer and physically blocking substrate passage. They sense the cellular nitrogen status through 2-oxoglutarate, and the energy level of the cell by binding both ATP and ADP with different affinities. The hyperthermophilic euryarchaeon Archaeoglobus fulgidus possesses three Amt proteins, each encoded in an operon with a GlnK ortholog. One of these proteins, GlnK2 was recently found to be incapable of binding 2-OG, and in order to understand the implications of this finding we conducted a detailed structural and functional analysis of a second GlnK protein from A. fulgidus, GlnK3. Contrary to Af-GlnK2 this protein was able to bind both ATP/2-OG and ADP to yield inactive and functional states, respectively. Due to the thermostable nature of the protein we could observe the exact positioning of the notoriously flexible T-loops and explain the binding behavior of GlnK proteins to their interaction partner, the Amt proteins. A thermodynamic analysis of these binding events using microcalorimetry evaluated by microstate modeling revealed significant differences in binding cooperativity compared to other characterized PII proteins, underlining the diversity and adaptability of this class of regulatory signaling proteins.
Sensing and uptake of external ammonium is essential for anaerobic ammonium-oxidizing (anammox) bacteria, and is typically the domain of the ubiquitous Amt/Rh ammonium transporters. Here, we report on the structure and function of an ammonium sensor/transducer from the anammox bacterium “Candidatus Kuenenia stuttgartiensis” that combines a membrane-integral ammonium transporter domain with a fused histidine kinase. It contains a high-affinity ammonium binding site not present in assimilatory Amt proteins. The levels of phosphorylated histidine in the kinase are coupled to the presence of ammonium, as conformational changes during signal recognition by the Amt module are transduced internally to modulate the kinase activity. The structural analysis of this ammonium sensor by X-ray crystallography and small-angle X-ray-scattering reveals a flexible, bipartite system that recruits a large uptake transporter as a sensory module and modulates its functionality to achieve a mechanistic coupling to a kinase domain in order to trigger downstream signaling events.
Mensacarcin, a potential antitumour drug, is produced by Streptomyces bottropensis. The structure consists of a three-membered ring system with many oxygen atoms. Of vital importance in this context is an epoxy moiety in the side chain of mensacarcin. Our studies with different mensacarcin derivatives have demonstrated that this epoxy group is primarily responsible for the cytotoxic effect of mensacarcin. In order to obtain further information about this epoxy moiety, inactivation experiments in the gene cluster were carried out to identify the epoxy-forming enzyme. Therefore the cosmid cos2, which covers almost the complete type II polyketide synthase (PKS) gene cluster, was heterologously expressed in Streptomyces albus. This led to production of didesmethylmensacarcin, due to the fact that methyltransferase genes are missing in the cosmid. Further gene inactivation experiments on this cosmid showed that MsnO8, a luciferase-like monooxygenase, introduces the epoxy group at the end of the biosynthesis of mensacarcin. In addition, the protein MsnO8 was purified, and its crystal structure was determined to a resolution of 1.80 Å.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.