Novel experimental modalities acquire spatially resolved velocity measurements for steady state and transient flows which are of interest for engineering and biological applications. One of the drawbacks of such high resolution velocity data is their susceptibility to measurement errors. In this paper, we propose a novel filtering strategy that allows enhancement of noisy measurements to obtain reconstruction of smooth divergence free velocity and corresponding pressure fields, which together approximately comply to a prescribed flow model. The main step in our approach consists of the appropriate use of the velocity measurements in the design of a linearized flow model which can be shown to be well-posed and consistent with the true velocity and pressure fields up to measurement and modeling errors. The reconstruction procedure is formulated as a linear quadratic optimal control problem and the resulting filter has analyzable smoothing and approximation properties. We also discuss briefly the discretization of our approach by finite element methods and comment on the efficient solution of the linear optimality system by iterative solvers. The capability of the proposed method to significantly reduce data noise is demonstrated by numerical tests in which we also compare to other methods like smoothing and solenoidal filtering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.