We use non-perturbative linked-cluster expansions to determine the ground-state energy per site of the spin-one Heisenberg model on the kagome lattice. To this end, a parameter is introduced allowing to interpolate between a fully trimerized state and the isotropic model. The ground-state energy per site of the full graph decomposition up to graphs of six triangles (18 spins) displays a complex behaviour as a function of this parameter close to the isotropic model which we attribute to divergencies of partial series in the graph expansion of quasi-1d unfrustrated chain graphs. More concretely, these divergencies can be traced back to a quantum critical point of the one-dimensional unfrustrated chain of coupled triangles. Interestingly, the reorganization of the non-perturbative linked-cluster expansion in terms of clusters with enhanced symmetry yields a ground-state energy per site of the isotropic two-dimensional model being in quantitative agreement with other numerical approaches in favor of a spontaneous trimerization of the system. Our findings are of general importance for any non-perturbative linked-cluster expansion on geometrically frustrated systems.
Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a non-uniform spatiotemporal precession pattern is observed. The kinetic theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba () and the Dresselhaus ( 3 ) parameters. Corresponding calculations are further validated by an excitationdensity dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.