Currently, there are no commercially available human vaccines against leishmaniasis. In rodents, cellular immunity to salivary proteins of sand fly vectors is associated to protection against leishmaniasis, making them worthy targets for further exploration as vaccines. We demonstrate that nonhuman primates (NHP) exposed to Phlebotomus duboscqi uninfected sand fly bites or immunized with salivary protein PdSP15 are protected against cutaneous leishmaniasis initiated by infected bites. Uninfected sand fly-exposed and 7 of 10 PdSP15-immunized rhesus macaques displayed a significant reduction in disease and parasite burden compared to controls. Protection correlated to the early appearance of Leishmania-specific CD4(+)IFN-γ(+) lymphocytes, suggesting that immunity to saliva or PdSP15 augments the host immune response to the parasites while maintaining minimal pathology. Notably, the 30% unprotected PdSP15-immunized NHP developed neither immunity to PdSP15 nor an accelerated Leishmania-specific immunity. Sera and peripheral blood mononuclear cells from individuals naturally exposed to P. duboscqi bites recognized PdSP15, demonstrating its immunogenicity in humans. PdSP15 sequence and structure show no homology to mammalian proteins, further demonstrating its potential as a component of a vaccine for human leishmaniasis.
Laboratory colonies of phlebotomine sand flies are necessary for experimental study of their biology, behaviour and mutual relations with disease agents and for testing new methods of vector control. They are indispensable in genetic studies and controlled observations on the physiology and behaviour of sand flies, neglected subjects of high priority. Colonies are of particular value for screening insecticides. Colonized sand flies are used as live vector models in a diverse array of research projects, including xenodiagnosis, that are directed toward control of leishmaniasis and other sand fly-associated diseases. Historically, labour-intensive maintenance and low productivity have limited their usefulness for research, especially for species that do not adapt well to laboratory conditions. However, with growing interest in leishmaniasis research, rearing techniques have been developed and refined, and sand fly colonies have become more common, enabling many significant breakthroughs. Today, there are at least 90 colonies representing 21 distinct phlebotomine sand fly species in 35 laboratories in 18 countries worldwide. The materials and methods used by various sand fly workers differ, dictated by the availability of resources, cost or manpower constraints rather than choice. This paper is not intended as a comprehensive review but rather a discussion of methods and techniques most commonly used by researchers to initiate, establish and maintain sand fly colonies, with emphasis on the methods proven to be most effective for the species the authors have colonized. Topics discussed include collecting sand flies for colony stock, colony initiation, maintenance and mass-rearing procedures, and control of sand fly pathogens in colonies.
BackgroundAs part of a project aimed at developing oviposition attractants for the control and surveillance of Phlebotomus papatasi (a vector of Old-World cutaneous leishmaniasis), we tested the hypothesis that gravid sand flies are attracted to chemical cues emanating from the growth medium of conspecific larvae - predominantly larvae-conditioned host feces that represents a suitable oviposition site. We report the results of a systematic assessment of media from various developmental stages of the sand fly using oviposition and olfactometer behavioral assays.MethodsWe conducted multiple-choice oviposition assays in 500 mL Nalgene jars. Six treatments were placed on separate filter paper discs at the bottom of the jar: 2nd/3rd larval instar medium, 4th larval instar/pupae medium, frass from expired colonies, larval food (aged rabbit chow and rabbit feces mix), rabbit feces, and a solvent (water) control. Fifty gravid females were introduced into each jar. Cumulative number of eggs laid on each filter paper per jar was counted at different time intervals from digital images. Attraction of gravid sand flies to these six treatments was assayed with a 3-chamber linear olfactometer. Twenty gravid females were transferred to the middle chamber of the olfactometer and their distribution in treatment and control chambers was recorded after 3 h.ResultsAlmost no eggs were oviposited during the first 72 h following a blood-meal. Cumulative egg deposition increased drastically in the next 24 h (hours 73–96), with a slight non-significant increasing trend thereafter. Comparing mean cumulative egg deposition among the six treatments, we found that significantly more eggs were oviposited on 2nd/3rd larval rearing medium followed by 4th instar/pupae rearing medium. Oviposition preference did not vary over time. The olfactometer results were consistent with the oviposition assays, with 2nd/3rd larval rearing medium being the most attractive, followed by 4th instar/pupae rearing medium.ConclusionThe key finding of this study is that gravid, laboratory reared, Ph. papatasi sand flies are significantly more attracted to rearing medium of the most biologically active larval stages (2nd/3rd instar and 4th instar/pupae). This finding indicates that sand fly-digested host food and feces is attractive to gravid females and suggests that the larvae and larval gut microbiome may be involved in conditioning the oviposition substrate and possibly the production of oviposition attractants and stimulants.
There is a threat for dengue virus (DENV) reemergence in many regions of the world, particularly in areas where the DENV vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), are readily available. However, there are currently no accurate and reliable diagnostic methods to provide critical, real-time information for early detection of DENV within the vector populations to implement appropriate vector control and personal protective measures. In this article, we report the ability of an immuno-chromatographic assay developed by VecTOR Test Systems Inc. to detect DENV in a pool of female Aedes mosquitoes infected with any of the four viral serotypes. The DENV dipstick assay was simple to use, did not require a cold chain, and provided clear results within 30 min. It was highly specific and did not cross-react with samples spiked with West Nile, yellow fever, Japanese encephalitis, Rift Valley fever, chikungunya, Venezuelan equine encephalomyelitis, Ross River, LaCrosse, or Caraparu viruses. The DENV assay can provide real-time critical information on the presence of DENV in mosquitoes to public health personnel. Results from this assay will allow a rapid threat assessment and the focusing of vector control measures in high-risk areas.
Rift Valley fever virus (RVFV) causes outbreaks of severe disease in domestic ungulates as well as humans in Africa. There is a concern that outbreaks of Rift Valley fever may continue and that this virus may spread into regions where it had not previously been detected. Surveillance and rapid detection are critical to the initiation of an effective disease control program. Here we report on the field evaluation in Kenya of the VectorTest RVFV antigen assay, modeled on the VecTest assay for West Nile virus. The dipsticks provided results in <20 min, were easy to use, and did not require a laboratory with containment facilities. Although none of the field-collected mosquitoes were infected with RVFV, the dipstick provided a clear positive result with pools of field-collected mosquitoes spiked with a single positive, irradiated (to inactivate any infectious virus) mosquito. Similarly, the dipstick was able to detect virus from pools of mosquitoes captured during the RVFV outbreak in 2007. The RVFV dipstick assay was highly specific with only a single weak false positive out of 266 pools tested (specificity > 99.6%). The RVFV assay can provide a rapid, safe, easy-to-use preliminary test to alert public health personnel to the presence of RVFV in mosquitoes in a given area. Results from this assay will allow for more rapid medical threat assessments and the focusing of vector control measures on high-risk areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.