Genomic discoveries will increasingly advance the science of medicine. Limited genomic literacy may adversely impact the public’s understanding and use of the power of genetics and genomics in health care and public health. In November 2011, a meeting was held by the National Human Genome Research Institute to examine the challenge of achieving genomic literacy for the general public, from K-12 to adult education. The role of the media in disseminating scientific messages and in perpetuating, or reducing, misconceptions was also discussed. Workshop participants agreed that genomic literacy will only be achieved through active engagement between genomics experts and the varied constituencies that comprise the public. This report summarizes the background, content, and outcomes from this meeting, including recommendations for a research agenda to inform decisions about how to advance genomic literacy in our society.
Engaging communities of color in the genetics public policy conversation is important for the translation of genetics research into strategies aimed at improving the health of all. Implementing model public participation and consultation processes can be informed by the Communities of Color Genetics Policy Project, which engaged individuals from African American and Latino communities of diverse socioeconomic levels in the process of "rational democratic deliberation" on ethical and policy issues stretching from genome research to privacy and discrimination concerns to public education. The results of the study included the development of a participatory framework based on a combination of the theory of democratic deliberation and the community-based public health model which we describe as "community-based dialogue."
Abstract:The authors describe the rationale and initial development of a new collaborative initiative, the Genomic Applications in Practice and Prevention Network. The network convened by the Centers for Disease Control and Prevention and the National Institutes of Health includes multiple stakeholders from academia, government, health care, public health, industry and consumers. The premise of Genomic Applications in Practice and Prevention Network is that there is an unaddressed chasm between gene discoveries and demonstration of their clinical validity and utility. This chasm is due to the lack of readily accessible information about the utility of most genomic applications and the lack of necessary knowledge by consumers and providers to implement what is known. The mission of Genomic Applications in Practice and Prevention Network is to accelerate and streamline the effective integration of validated genomic knowledge into the practice of medicine and public health, by empowering and sponsoring research, evaluating research findings, and disseminating high quality information on candidate genomic applications in practice and prevention. Genomic Applications in Practice and Prevention Network will develop a process that links ongoing collection of information on candidate genomic applications to four crucial domains: (1) knowledge synthesis and dissemination for new and existing technologies, and the identification of knowledge gaps, (2) a robust evidence-based recommendation development process, (3) translation research to evaluate validity, utility and impact in the real world and how to disseminate and implement recommended genomic applications, and (4) programs to enhance practice, education, and surveillance. Genet Med 2009:11(7):488 -494.Key Words: decision support, genomics, information, medicine, network, public health T he ongoing success of genome wide association studies (GWAS) in uncovering genetic risk factors for many common diseases has fuelled expectations of a new era of health care based on personalized treatment, early detection, and disease prevention. 1-3 An optimal process is needed for appropriate translation of these new genomic discoveries into practice. The process should include mechanisms for developing an understanding of the relationship between these newly discovered factors and clinical outcomes (clinical validity), and the costs, benefits, and harms of genome-based technologies in real world settings (clinical utility). 4 Furthermore, the process should facilitate the development of evidence-based guidelines for the use of genomic applications 5 ; and appropriate implementation of these applications in practice, including protection of individuals and communities against discrimination based on genetic information. 6 Importantly, advances in genomics should be considered in the context of the larger forces affecting health care delivery in the United States, including escalating costs, differential access to quality health care, and a growing number of uninsured persons in ou...
The aim of this article is to describe the methods and effectiveness of the Public Engagement in Genetic Variation and Haplotype Mapping Issues (PEGV) Project, which engaged a community in policy discussion about genetic variation research. The project implemented a 6-stage community engagement model in New Rochelle, New York. First, researchers recruited community partners. Second, the project team created community oversight. Third, focus groups discussed concerns generated by genetic variation research. Fourth, community dialogue sessions addressed focus group findings and developed policy recommendations. Fifth, a conference was held to present these policy recommendations and to provide a forum for HapMap (haplotype mapping) researchers to dialogue directly with residents. Finally, findings were disseminated via presentations and papers to the participants and to the wider community beyond. The project generated a list of proposed guidelines for genetic variation research that addressed the concerns of New Rochelle residents. Project team members expressed satisfaction with the engagement model overall but expressed concerns about how well community groups were utilized and what segment of the community actually engaged in the project. The PEGV Project represents a model for researchers to engage the general public in policy development about genetic research. There are benefits of such a process beyond the desired genetic research. (Population Health Management 2012;15:78-89)
Description: Among the two leading causes of death in the United States, each responsible for one in every four deaths, heart disease costs Americans $300 billion, while cancer costs Americans $216 billion per year. They also rank among the top three causes of death in Europe and Asia. In 2012 the University of Michigan Center for Public Health and Community Genomics and Genetic Alliance, with the support of the Centers for Disease Control and Prevention Office of Public Health Genomics, hosted a conference in Atlanta, Georgia to consider related action strategies based on public health genomics. The aim of the conference was consensus building on recommendations to implement genetic screening for three major heritable contributors to these mortality and cost figures: hereditary breast and ovarian cancer (HBOC), familial hypercholesterolemia (FH), and Lynch syndrome (LS). Genetic applications for these three conditions are labeled with a “Tier 1” designation by the U.S. Centers for Disease Control and Prevention because they have been fully validated and clinical practice guidelines based on systematic review support them. Methodology: The conference followed a deliberative sequence starting with nationally recognized clinical and public health presenters for each condition, followed by a Patient and Community Perspectives Panel, working group sessions for each of the conditions, and a final plenary session. The 74 conference participants represented disease research and advocacy, public health, medicine and nursing, genetics, governmental health agencies, and industry. Participants drew on a public health framework interconnecting policy, clinical intervention, surveillance, and educational functions for their deliberations. Results: Participants emphasized the importance of collaboration between clinical, public health, and advocacy groups in implementing Tier 1 genetic screening. Advocacy groups could help with individual and institutional buy-in of Tier 1 programs. Groups differed on funding strategies, with alternative options such as large-scale federal funding and smaller scale, incremental funding solutions proposed. Piggybacking on existing federal breast and colorectal cancer control programs was suggested. Public health departments need to assess what information is now being collected by their state cancer registries. The groups advised that information on cascade screening of relatives be included in toolkits for use by states. Participants stressed incorporation of family history into health department breast cancer screening programs, and clinical HBOC data into state surveillance systems. The carrying out of universal LS screening of tumors in those with colorectal cancer was reviewed. Expansion of universal screening to include endometrial tumors was discussed, as was the application of guidelines recommending cholesterol screening of children 9–11 years old. States more advanced in terms of Tier 1 testing could serve as models and partners with other states launching screening and surveillance p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.