Luminescent solar concentrators (LSCs) generally consist of transparent polymer sheets doped with luminescent species. Incident sunlight is absorbed by the luminescent species and emitted with high quantum efficiency, such that emitted light is trapped in the sheet and travels to the edges where it can be collected by solar cells. LSCs offer potentially lower cost per Wp. This paper reviews results mainly obtained within the framework of the Fullspectrum project. Two modeling approaches are presented, i.e., a thermodynamic and a ray-trace one, as well as experimental results, with a focus on LSC stability.
The fabrication and full characterization of luminescent solar concentrators (LSCs) comprising CdSe core/multishell quantum dots (QDs) is reported. TEM analysis shows that the QDs are well dispersed in the acrylic medium while maintaining a high quantum yield of 45%, resulting in highly transparent and luminescent polymer plates. A detailed optical analysis of the QD-LSCs including absorption, emission, and time-resolved fluorescence measurements is presented. Both silicon and GaAs solar cells attached to the side of the QD-LSCs are used to measure the external quantum efficiency and power conversion efficiency (2.8%) of the devices. Stability tests show only a minor decrease of 4% in photocurrent upon an equivalent of three months outdoor illumination. The optical data are used as input for a ray-trace model that is shown to describe the properties of the QD-LSCs well. The model was then used to extrapolate the properties of the small test devices to predict the power conversion efficiency of a 50×50 cm2 module with a variety of different solar cells. The work described here gives a detailed insight into the promise of QD-based LSCs
Low temperature in situ boron doped Si epitaxial growth by ultrahigh vacuum electron cyclotron resonance chemical vapor deposition Plasma enhanced selective area microcrystalline silicon deposition on hydrogenated amorphous silicon: Surface modification for controlled nucleation Investigation of substrate-dependent nucleation of plasma-deposited microcrystalline silicon on glass and silicon substrates using atomic force microscopy A new technique for semiconductor epitaxy at low substrate temperatures is presented, called low-energy dc plasma enhanced chemical vapor deposition. The method has been applied to Si homoepitaxy at substrate temperatures between 400 and 600°C and growth rates between 0.1 and 1 nm/s, using silane as the reactive gas. The quality of the Si films has been examined by reflection high-energy electron diffraction, scanning tunneling microscopy, cross-section transmission electron microscopy, and high-resolution x-ray diffraction. Two effects have been identified to lead to the formation of stacking faults after an initial layer of defect-free growth: ͑1͒ substrate bombardment by ions with energies in excess of 15 eV, and ͑2͒ hydrogen adsorption limiting the surface mobility of Si atoms and silane radicals. Both result in the accumulation of surface roughness, facilitating the nucleation of stacking faults when the roughness reaches a critical level. Defect introduction can be eliminated effectively by biasing the substrate during growth and by decreasing the hydrogen coverage, either by admixing small amounts of germane to the silane or by using a sufficiently high plasma density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.