Using a multispecies seed sowing experiment, we investigated the roles of seed and microsite limitation in constraining the restoration of native prairie diversity and ecosystem function in an abandoned upland hayfield in northeastern Kansas. Seeds of 32 native and naturalized plant species from the regional pool were sown into undisturbed and experimentally disturbed field plots. After six growing seasons, experimental sowing led to major shifts in species and functional group composition, increases in native species abundance and floristic quality, declines in abundance of non‐native species, and increases in plant diversity. These changes in community structure led to significant changes at the ecosystem level including increases in light capture, peak biomass, primary production, litter biomass, root biomass, and C storage in roots. Our findings reveal the importance of seed limitations in constraining the natural recovery of prairie vegetation, biodiversity, and ecosystem functioning in this grassland and confirm broadcast sowing as a useful tool for the restoration of upland hayfield sites.
The significant loss of the longleaf pine-wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long-term and landscape-scale restoration experiment at the 80,125 ha (
Soil salinization resulting from agricultural and oil-and gas-production activities can impact habitats of native flora and fauna and reduce production on agricultural lands. Restoration of saline areas with salt-tolerant vegetation may alleviate impacts. However, differences in how the growth rate under saline conditions varies between species and source populations must first be evaluated before recommending species for restoration. Plant material of Western wheatgrass (Pascopyrum smithii) and Inland saltgrass (Distichlis spicata) collected from Cheyenne Bottoms Preserve, Kansas and Little Salt Fork Marsh, Nebraska was propagated to evaluate variation in growth rates between these species under saline conditions and determine if differences exist between populations within these species. Ten transplants of each species from each location were grown in sand culture in a greenhouse for 51 days and watered with one of five different saltwater solutions (0.86 dS/m, 9.85 dS/m, 17.85 dS/m, 32.5 dS/m, and 57.7 dS/m). Results indicate that P. smithii grew faster than D. spicata at all comparable salinity levels. Only D. spicata exhibited significant differences in growth rate under saline conditions between populations. Results suggest that P. smithii is equivalent to D. spicata in salt tolerance and should be regarded as an appropriate halophyte for restoration of salt-affected plant environments. Results for D. spicata suggest that differences between source populations should be considered when evaluating plant material for plant community restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.