Winter recreation can displace ungulates to poor habitats, which may raise their energy expenditure and lower individual survivorship, causing population declines. Winter recreation could be benign, however, if animals habituate. Moreover, recreation creates trails. Traveling on them could reduce energy expenditure, thereby increasing ungulate survivorship and generating population benefits. Balancing recreation use with wildlife stewardship requires identifying when these effects occur. This task would be simpler if guidelines existed to inform assessments. We developed and tested such guidelines using two approaches. First, we synthesized literature describing the effects of winter recreation-motorized and nonmotorized-on northern ungulates. This synthesis enabled formulating six guidelines, while exposing two requiring further attention (ungulate habituation and displacement). Second, we tested these two guidelines and evaluated the others by quantifying the behavioral responses of moose to snowmobiles, in two areas of south-central Alaska, differing by snowmobile predictability. For each location, we modeled moose preferences during the snowmobile period using different combinations of eight variables-static (elevation and slope), biotic (habitat and cover), and anthropogenic (distance to roads, railroads, snowmobile trails, and trail density). We identified the model with the most support and used it to estimate parameter coefficients for pre-and post-recreation periods. Changes in coefficients between periods indicated snowmobile effects on moose. Overall, we produced and evaluated six guidelines describing when winter recreation is potentially detrimental to ungulates as follows: (1) when unpredictable, (2) spanning large areas, (3) long in duration, (4) large spatial footprint, (5) nonmotorized, and (6) when animals are displaced to poor quality habitats.
Arctic and boreal ecosystems are experiencing rapid changes in temperature and precipitation regimes. Subsequent shifts in seasonality can lead to a mismatch between the timing of resource availability and species’ life-history events, known as phenological or trophic mismatch. Although mismatch has been shown to negatively affect some northern animal populations, longer-term impacts across large regions remain unknown. In addition, animals may rely on climate cues during preceding seasons to time key life history events such as reproduction, but the reliability of these cues as indicators of subsequent resource availability has not been examined. We used remote sensing and gridded spatial data to evaluate the effect of climate factors on the reproductive phenology and success of a wide-ranging carnivore, the gray wolf (Canis lupus). We used global positioning system (GPS) location data from 388 wolves to estimate den initiation dates (n = 227 dens within 106 packs) and reproductive success in eight populations across northwestern North America from 2000 to 2017. Spring onset shifted 14.2 d earlier, on average, during the 18-year period, but the regional mean date of denning did not change. Preceding winter temperature was the strongest climatic predictor of denning phenology, with higher temperatures advancing the timing of denning. Winter temperature was also one the strongest and most reliable indicators of the timing of spring onset. Reproductive success was not affected by timing of denning or synchrony with spring onset, but improved during cooler summers and following relatively dry autumns. Our findings highlight a disconnect between climate factors that affect phenology and those that affect demography, suggesting that carnivores may be resilient to shifts in seasonality and yet sensitive to weather conditions affecting their prey at both local and regional scales. These insights regarding the relationship between climate and carnivore demography should improve predictions of climate warming effects on the highest trophic levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.