Sexual selection can result in exaggerated morphology that constrains locomotor performance. We studied the relationship between morphology and the tail-flip escape response in male and female rusty crayfish (Faxonius rusticus), a species in which males have enlarged claws (chelae). We found that females had wider abdomens and longer uropods (terminal appendage of the tail fan) than males, while males possessed deeper abdomens and larger chelae, relative to total length. Chelae size was negatively associated with escape velocity, whereas longer abdomens and uropods were positively associated with escape velocity. We found no sex-specific differences in maximum force generated during the tail flip, but uropod length was strongly, positively correlated with tail-flip force in males. Particle image velocimetry (PIV) revealed that the formation of a vortex, rather than the expulsion of fluid between two closing body surfaces, generates propulsion in rusty crayfish. PIV also revealed that the pleopods (ventral abdominal appendages) contribute to the momentum generated by the tail. To our knowledge, this is the first confirmation of vortex formation in a decapod crustacean.
Inspired by the fastest observed live fishes, we have designed, built and tested a robotic fish that emulates the fast-start maneuver of these fishes and generates acceleration and velocity magnitudes comparable to those of the live fishes within the same time scale. We have designed the robotic fish such that it uses the snap-through bucking of its spine to generate the fast-start response. We have used a dynamic snap-through buckling model and a series of experiments on a beam under snap-through buckling to describe the robotic fish's motion. Our under-actuated robot relies on passive dynamics of a continuous beam to generate organic waveforms. In its transient fast-start maneuver, our robotic fish produces mode shapes very similar to those observed in live fishes, by going through a snap-through bifurcation. We have also used a nonlinear structural model subjected to a non-conservative eccentric compressive force, which is constrained to act tangential to the structure at all times, coupled with a simple fluid dynamic model to approximate the transient behavior of the robot. We relate the numerical results from our nonlinear model to the dynamics observed in the live system proposing an updated kinematic model to understand the mode shapes observed in the fast-start maneuver of the live fishes. We also report on deploying the robotic fish in a river.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.