The adsorption and desorption kinetics of N2 on porous amorphous solid water (ASW) films were studied using molecular beam techniques, temperature programed desorption (TPD), and reflection-absorption infrared spectroscopy. The ASW films were grown on Pt(111) at 23 K by ballistic deposition from a collimated H2O beam at various incident angles to control the film porosity. The experimental results show that the N2 condensation coefficient is essentially unity until near saturation, independent of the ASW film thickness indicating that N2 transport within the porous films is rapid. The TPD results show that the desorption of a fixed dose of N2 shifts to higher temperature with ASW film thickness. Kinetic analysis of the TPD spectra shows that a film thickness rescaling of the coverage-dependent activation energy curve results in a single master curve. Simulation of the TPD spectra using this master curve results in a quantitative fit to the experiments over a wide range of ASW thicknesses (up to 1000 layers, approximately 0.5 microm). The success of the rescaling model indicates that N2 transport within the porous film is rapid enough to maintain a uniform distribution throughout the film on a time scale faster than desorption.
High surface area, porous titanium carbide (TiC) films have been synthesized employing physical vapor deposition of titanium at glancing angles under high vacuum within an ethylene ambient. The composition, surface area, and morphology of the TiC films were studied as a function of deposition conditions including ethylene pressure, titanium deposition angle, substrate temperature during growth, and postdeposition annealing temperature. At high or glancing deposition angles (∼80−85°) synthesis produces films composed of arrays of porous nanocolumns of TiC, while deposition at more moderate angles, less than 70°, results in continuous, reticulated films. The maximum specific surface area (840 m2/g) is obtained by growth with an incident titanium deposition angle of 65°, an ethylene pressure of 1.5 × 10−7 Torr, and a substrate growth temperature of ∼350 K. This result is in contrast to previous investigations using related physical vapor deposition techniques which have generally shown that films with the greatest porosity and surface area are grown by deposition at cryogenic temperatures (T ≤ 77 K). The fact that the surface area is maximized at this uncharacteristically high growth temperature implies that thermally induced decomposition of ethylene and the subsequent desorption of reaction byproducts are important steps for the synthesis of these materials. Not only does deposition of TiC at 350 K result in high specific surface areas, but electron diffraction measurements indicate that these films are polycrystalline. Titanium carbide films created in this study are thermally robust and resistant to sintering, retaining greater than 70% of their initial surface area after annealing to 1000 K. The ability to deposit TiC near room temperature should allow these films to be deposited onto a wide variety of substrates.
The adsorption, desorption, and diffusion kinetics of N2 on thick (up to approximately 9 microm) porous films of amorphous solid water (ASW) films were studied using molecular beam techniques and temperature programmed desorption. Porous ASW films were grown on Pt(111) at low temperature (<30 K) from a collimated H2O beam at glancing incident angles. In thin films (<1 microm), the desorption kinetics are well described by a model that assumes rapid and uniform N2 distribution throughout the film. In thicker films (>1 microm), N2 adsorption at 27 K results in a nonuniform distribution, where most of N2 is trapped in the outer region of the film. Redistribution of N2 can be induced by thermal annealing. The apparent activation energy for this process is approximately 7 kJ/mol, which is approximately half of the desorption activation energy at the corresponding coverage. Preadsorption of Kr preferentially adsorbs onto the highest energy binding sites, thereby preventing N2 from trapping in the outer region of the film which facilitates N2 transport deeper into the porous film. Despite the onset of limited diffusion, the adsorption kinetics are efficient, precursor mediated, and independent of film thickness. An adsorption mechanism is proposed, in which a high-coverage N2 front propagates into a pore by the rapid transport of physisorbed second layer N2 species on top of the first surface bound layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.