The high polysaccharide content of some plant species hinders the successful isolation of their DNA. As an alternative to the macro-extraction methods previously published for polysaccharide-rich plants, we present two techniques (STE/CTAB and HEPES/CTAB), which are performed in microcentrifuge tubes. These protocols are suitable for small amounts of silica gel-preserved plant tissue such as are commonly available from endangered plants. The critical step to remove polysaccharides was performing initial washes in either STE (0.25 M sucrose, 0.03 M Tris, 0.05 M EDTA) or HEPES (2% β-mercaptoethanol, 0.2% PVP, 0.1 M HEPES, pH 8.0) buffer. Precipitating the DNA at room temperature with isopropanol also aided in decreasing polysaccharide co-precipitation. Of the two protocols we present the STE/CTAB method has the advantages of being more cost-effective and avoiding the use of the hazardous chemical β-mercaptoethanol.
Previous molecular phylogenetic analyses have resolved the Australian bloodwood eucalypt genus Corymbia (~100 species) as either monophyletic or paraphyletic with respect to Angophora (9–10 species). Here we assess relationships of Corymbia and Angophora using a large dataset of chloroplast DNA sequences (121,016 base pairs; from 90 accessions representing 55 Corymbia and 8 Angophora species, plus 33 accessions of related genera), skimmed from high throughput sequencing of genomic DNA, and compare results with new analyses of nuclear ITS sequences (119 accessions) from previous studies. Maximum likelihood and maximum parsimony analyses of cpDNA resolve well supported trees with most nodes having >95% bootstrap support. These trees strongly reject monophyly of Corymbia, its two subgenera (Corymbia and Blakella), most taxonomic sections (Abbreviatae, Maculatae, Naviculares, Septentrionales), and several species. ITS trees weakly indicate paraphyly of Corymbia (bootstrap support <50% for maximum likelihood, and 71% for parsimony), but are highly incongruent with the cpDNA analyses, in that they support monophyly of both subgenera and some taxonomic sections of Corymbia. The striking incongruence between cpDNA trees and both morphological taxonomy and ITS trees is attributed largely to chloroplast introgression between taxa, because of geographic sharing of chloroplast clades across taxonomic groups. Such introgression has been widely inferred in studies of the related genus Eucalyptus. This is the first report of its likely prevalence in Corymbia and Angophora, but this is consistent with previous morphological inferences of hybridisation between species. Our findings (based on continent-wide sampling) highlight a need for more focussed studies to assess the extent of hybridisation and introgression in the evolutionary history of these genera, and that critical testing of the classification of Corymbia and Angophora requires additional sequence data from nuclear genomes.
Universal target enrichment kits maximize utility across wide evolutionary breadth while minimizing the number of baits required to create a cost-efficient kit. The Angiosperms353 kit has been successfully used to capture loci throughout the angiosperms, but the default target reference file includes sequence information from only 6-18 taxa per locus. Consequently, reads sequenced from on-target DNA molecules may fail to map to references, resulting in fewer on-target reads for assembly, and reducing locus recovery. METHODS:We expanded the Angiosperms353 target file, incorporating sequences from 566 transcriptomes to produce a 'mega353' target file, with each locus represented by 17-373 taxa. This mega353 file is a drop-in replacement for the original Angiosperms353 file in HybPiper analyses. We provide tools to subsample the file based on user-selected taxon groups, and to incorporate other transcriptome or protein-coding gene data sets. RESULTS:Compared to the default Angiosperms353 file, the mega353 file increased the percentage of on-target reads by an average of 32%, increased locus recovery at 75% length by 49%, and increased the total length of the concatenated loci by 29%.DISCUSSION: Increasing the phylogenetic density of the target reference file results in improved recovery of target capture loci. The mega353 file and associated scripts are available at: https://github.com/chris jacks on-pelli cle/NewTa rgets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.