In greenhouse production, most floricultural crops are cultivated in soilless substrates, which often supply limited amounts of plant-available silicon (Si). The goal of this study was to determine the effects of Si supplementation on greenhouse-produced ornamental sunflower (Helianthus annuus L. ‘Ring of Fire’). Potassium silicate (KSiO3) substrate incorporation or weekly substrate drenches, sodium silicate (NaSiO3) foliar applications, and rice husk ash substrate incorporation were used as Si supplements. Silicon content of Si-treated plants increased compared with untreated controls. Depending on the source and concentration of silicon supplied, several horticultural traits were improved as a result of Si supplementation. Thick, straight stems, increased flower and stem diameters, and increased height were observed in some of the treatments, upgrading sunflower quality compared with untreated controls. However, growth abnormalities were observed when concentrations of 100 and 200 mg·L−1 Si were supplied as KSiO3 substrate drenches. In these treatments, plants appeared stunted with deformed flowers and were delayed in flowering. Consequently, Si supplementation effects on greenhouse-produced sunflowers can vary from beneficial to detrimental depending on the applied source and concentration.
Most commercial and university substrate testing laboratories' recommended floriculture nutritional values are based on the saturated media extract (SME) method. With the recent gain in popularity of pour-through nutritional monitoring, alternative recommended values are needed for nutrient analyses based on pour-through extracts. Pour-through nutritional values were compared to the SME values to develop calibration curves and recommended nutritional values. Euphorbia pulcherrima `Freedom Red' Willd. ex Klotzch. were grown for two consecutive growing seasons in 16.5 cm plastic pots with Fafard 4 P root substrate and fertigated with 200, 300, or 400 mg·L-1 N from a 13N-0.88P-10.8K fertilizer. Linear relationships existed and inverse calibration curves for pour-through and SME comparisons were developed for (r2): EC (0.98), NO3- (0.98), P (0.97 to 0.99), K (0.99), Ca (0.94 to 0.97), and Mg (0.91). In addition, recommended pour-through substrate value ranges were developed for comparison with SME values. The established calibration curves and pour-through substrate value ranges will allow substrate-testing laboratories to make nutritional recommendations based on pour-through extractions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.