Today's high-end massively parallel processing (MPP) machines have thousands to tens of thousands of processors, with next-generation systems planned to have in excess of one hundred thousand processors. For systems of such scale, efficient I/O is a significant challenge that cannot be solved using traditional approaches. In particular, general purpose parallel file systems that limit applications to standard interfaces and access policies do not scale and will likely be a performance bottleneck for many scientific applications.In this paper, we investigate the use of a "lightweight" approach to I/O that requires the application or I/O-library developer to extend a core set of critical I/O functionality with the minimum set of features and services required by its target applications. We argue that this approach allows the development of I/O libraries that are both scalable and secure. We support our claims with preliminary results for a lightweight checkpoint operation on a development cluster at Sandia.
Trilinos I/O Support (Trios) is a new capability area in Trilinos that serves two important roles: (1) it provides and supports I/O libraries used by in-production scientific codes; (2) it provides a research vehicle for the evaluation and distribution of new techniques to improve I/O on advanced platforms. This paper provides a brief overview of the production-grade I/O libraries in Trios as well as some of the ongoing research efforts that contribute to the experimental libraries in Trios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.