The Salt Plains National Wildlife Refuge (SPNWR) near Cherokee, Oklahoma, contains a barren salt flat where Permian brine rises to the surface and evaporates under dry conditions to leave a crust of white salt. Rainfall events dissolve the salt crust and create ephemeral streams and ponds. The rapidly changing salinity and high surface temperatures, salinity, and UV exposure make this an extreme environment. The Salt Plains Microbial Observatory (SPMO) examined the soil microbial community of this habitat using classic enrichment and isolation techniques and phylogenetic rDNA studies. Rich growth media have been emphasized that differ in total salt concentration and composition. Aerobic heterotrophic enrichments were performed under a variety of conditions. Heterotrophic enrichments and dilution plates have generated 105 bacterial isolates, representing 46 phylotypes. The bacterial isolates have been characterized phenotypically and subjected to rDNA sequencing and phylogenetic analyses. Fast-growing isolates obtained from enrichments with 10% salt are predominantly from the gamma subgroup of the Proteobacteria and from the low GC Gram-positive cluster. Several different areas on the salt flats have yielded a variety of isolates from the Gram-negative genera Halomonas, Idiomarina, Salinivibrio, and Bacteroidetes. Gram-positive bacteria are well represented in the culture collection including members of the Bacillus, Salibacillus, Oceanobacillus, and Halobacillus.
The Great Salt Plains of Oklahoma is a natural inland terrestrial hypersaline environment that forms evaporite crusts of mainly NaCl. Previous work described the bacterial community through the characterization of 105 isolates from 46 phylotypes. The current report describes the archaeal community through both microbial isolation and culture-independent techniques. Nineteen distinct archaea were isolated, and ten were characterized phenetically. Included were isolates phylogenetically related to Haloarcula, Haloferax, Halorubrum, Haloterrigena, and Natrinema. The isolates were aerobic, non-motile, Gram-negative organisms and exhibited little capacity for fermentation. All of the isolates were halophilic, with most requiring at least 15% salinity for growth, and all grew at 30% salinity. The isolates were mainly mesothermic and could grow at alkaline pH (8.5). A 16S rRNA gene library was generated by polymerase chain reaction amplification of direct soil DNA extracts, and 200 clones were sequenced and analyzed. At 99% and 94% sequence identity, 36 and 19 operational taxonomic units (OTUs) were detected, respectively, while 53 and 22 OTUs were estimated by Chao1, respectively. Coverage was relatively high (100% and 59% at 89% and 99% sequence identity, respectively), and the Shannon Index was 3.01 at 99% sequence identity, comparable to or somewhat lower than hypersaline habitats previously studied. Only sequences from Euryarchaeota in the Halobacteriales were detected, and the strength of matches to known sequences was generally low, most near 90% sequence identity. Large clusters were observed that are related to Haloarcula and Halorubrum. More than two-thirds of the sequences were in clusters that did not have close relatives reported in public databases.
The Great Salt Plains (GSP), an unvegetated, barren salt flat that is part of the Salt Plains National Wildlife Refuge near Cherokee, Oklahoma, is the site of the Salt Plains Microbial Observatory. At the GSP the briny remains of an ancient sea rise to the surface, evaporate under dry conditions, and leave crusts of white salt. Adaptation to this environment requires development of coping mechanisms providing tolerance to desiccating conditions due to the high salinity, extreme temperatures, alkaline pH, unrelenting exposure to solar UV radiation, and prevailing winds. Several lines of evidence suggest that the same DNA repair mechanisms that are usually associated with UV light or chemically induced DNA damage are also important in protecting microbes from desiccation. Because little is known about the DNA repair capacity of microorganisms from hypersaline terrestrial environments, we explored the DNA repair capacity of microbial isolates from the GSP. We used survival following exposure to UV light as a convenient tool to assess DNA repair capacity. Two species of Halomonas (H. salina and H. venusta) that have been isolated repeatedly from the GSP were chosen for analysis. The survival profiles were compared to those of Escherichia coli, Pseudomonas aeruginosa, and Halomonas spp. from aquatic saline environments. Survival of GSP organisms exceeded that of the freshwater organism P. aeruginosa, although they survived no better than E. coli. The GSP isolates were much more resistance to killing by UV than were the aquatic species of Halomonas reported in the literature [Martin et al. (2000) Can J Microbiol 46:180-187]. Unlike E. coli, the GSP isolates did not appear to have an inducible, error-prone repair mechanism. However, they demonstrated high levels of spontaneous mutation.
The current work extends the phenotypic characterization of a bacterial culture collection from the Great Salt Plains of Oklahoma. This barren expanse of mud flats is typically crusted with thalassohaline salt evaporites. The initial account of the aerobic heterotrophic bacteria from the Great Salt Plains described 105 halotolerant isolates that represented 47 phylotypes. Extensive phenotypic analyses were performed on 76 isolates representing 37 unique phylotypes. The current report extends these observations for 60 of the isolates by measuring a wider set of phenotypic characteristics. Utilization patterns for 45 carbon substrates were used to assign the isolates into seven coherent phenons, along with several singletons and a group of isolates that did not grow on single carbon substrates. Most of the isolates were able to utilize nearly all of the nitrogen sources tested, with nitrate being the least utilized. Little antibiotic resistance was seen in the collection as a whole; however, certain phenons were enriched for antibiotic-resistant organisms. A total of 81 phenotypic characteristics were used to generate dendrograms. The numerical taxonomy trees essentially agreed with those generated using 16S rRNA gene sequences. The pattern of carbon substrate utilization showed substantial changes at different salinities that may have relevance to the variable salinities microbes experience at the Salt Plains over time.
Small streams exert great influences on the retention and attenuation of nitrogen (N) within stream networks. Human land use can lead to increased transport of dissolved inorganic N compounds and downstream eutrophication. Microbial activity in streams is important for maintaining an actively functioning N cycle. Chronically high N loading in streams affects the rates of the central processes of the N cycle by increasing rates of nitrification and denitrification, with biota exhibiting decreased efficiency of N use. The LINXII project measured N-cycle parameters in small streams using NO tracer release experiments. We concurrently measured N fixation rates in six streams of three types (agricultural, pristine, and urban prairie streams) as part of this broader study of major N-cycle processes. Nitrogen fixation in streams was significantly negatively correlated with nitrate levels, dissolved inorganic N levels, and denitrification rates. Algal mat and leaf litter samples generally exhibited the highest rates of N fixation. The abundance of nifH genes, as measured by real-time PCR, was marginally correlated with N-fixation rates, but not to other N-cycle processes or stream characteristics. The nifH sequences observed were assigned to cyanobacteria, Deltaproteobacteria, Methylococcus, and Rhizobia. Seasonal changes, disturbances, and varying inputs may encourage a diverse, flexible, stable N-fixing guild. Patchiness in the streams should be considered when assessing the overall impact of N fixation, since algal biomass exhibited high rates of N fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.