Anti-HIV microbicides are being investigated in clinical trials and understanding how promising strategies work, coincident with demonstrating efficacy in vivo, is central to advancing new generation microbicides. We evaluated Carraguard® and a new generation Carraguard-based formulation containing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (PC-817). Since dendritic cells (DCs) are believed to be important in HIV transmission, the formulations were tested for the ability to limit DC-driven infection in vitro versus vaginal infection of macaques with RT-SHIV (SIVmac239 bearing HIV reverse transcriptase). Carraguard showed limited activity against cell-free and mature DC-driven RT-SHIV infections and, surprisingly, low doses of Carraguard enhanced infection. However, nanomolar amounts of MIV-150 overcame enhancement and blocked DC-transmitted infection. In contrast, Carraguard impeded infection of immature DCs coincident with DC maturation. Despite this variable activity in vitro, Carraguard and PC-817 prevented vaginal transmission of RT-SHIV when applied 30 min prior to challenge. PC-817 appeared no more effective than Carraguard in vivo, due to the limited activity of a single dose of MIV-150 and the dominant barrier effect of Carraguard. However, 3 doses of MIV-150 in placebo gel at and around challenge limited vaginal infection, demonstrating the potential activity of a topically applied NNRTI. These data demonstrate discordant observations when comparing in vitro and in vivo efficacy of Carraguard-based microbicides, highlighting the difficulties in testing putative anti-viral strategies in vitro to predict in vivo activity. This work also underscores the potential of Carraguard-based formulations for the delivery of anti-viral drugs to prevent vaginal HIV infection.
The genome of a canine parvovirus isolate strain (CPV-N) was cloned, and the DNA sequence was determined. The entire genome, including ends, was 5,323 nucleotides in length. The terminal repeat at the 3' end of the genome shared similar structural characteristics but limited homology with the rodent parvoviruses. The 5' terminal repeat was not detected in any of the clones. Instead, a region of DNA starting near the capsid gene stop codon and extending 248 base pairs into the coding region had been duplicated and inserted 75 base pairs downstream from the poly(A) addition site. Consensus sequences for the 5' donor and 3' acceptor sites as well as promotors and poly(A) addition sites were identified and compared with the available information on related parvoviruses. The genomic organization of CPV-N is similar to that of feline parvovirus (FPV) in that there are two major open reading frames (668 and 722 amino acids) in the plus strand (mRNA polarity). Both coding domains are in the same frame, and no significant open reading frames were apparent in any of the other frames of both minus and plus DNA strands. The nucleotide and amino acid homologies of the capsid genes between CPV-N and FPV were 98 and 99%, respectively. In contrast, the nucleotide and amino acid homologies of the capsid genes for CPV-N and CPV-b (S. Rhode III, J. Virol. 54:630-633, 1985) were 95 and 98%, respectively. These results indicate that very few nucleotide or amino acid changes differentiate the antigenic and host range specificity of FPV and CPV.
An oocyte expression system was used to test the relation between a complementary DNA (cDNA) clone encoding the liver gap junction protein and cell-cell channels. Total liver polyadenylated messenger RNA injected into oocytes induced cell-cell channels between paired oocytes. This induction was blocked by simultaneous injection of antisense RNA transcribed from the gap junction cDNA. Messenger RNA selected by hybridization to the cDNA clone and translated in oocyte pairs yielded a higher junctional conductance than unselected liver messenger RNA. Cell-cell channels between oocytes were also formed when the cloned cDNA was expressed under the control of a heat-shock promoter. A concentration-dependent induction of channels was observed in response to injection with in vitro transcribed gap junction messenger RNA. Thus, the liver gap junction cDNA encodes a protein that is essential for the formation of functional cell-cell channels.
A full-length cDNA for rat lung beta-galactoside lectin (subunit Mr approximately 14,000, lectin 14K) was cloned and the nucleotide sequence determined. The deduced amino acid sequence agrees with the amino acid composition and direct amino acid sequence analysis of purified rat lung lectin peptides. We found that the amino-terminal alanine is blocked with an acetyl group. Comparison of the amino acid sequence with other proteins shows a high degree of homology only with other vertebrate lectin sequences, supporting the suggestion that these lectins may constitute a unique class of vertebrate proteins. The amino acid composition and sequence of lectin peptides, the sequence of lectin cDNA, and isoelectric focusing of purified lectin indicate that rat lung lectin 14K is composed predominantly of a single protein. In addition, rat uterus lectin 14K was found to be the same protein as that present in lung. We characterized the secondary and tertiary structure of rat lung lectin 14K by circular dichroism, by analytical ultracentrifugation, and by computer analysis of its primary structure. Results of these experiments suggest that lectin 14K is primarily a hydrophilic protein with an asymmetric, elongated structure consisting of approximately equal amounts of alpha helix, beta sheet, beta turn, and random coil. We found that Cys-2 and Cys-130 react most rapidly with iodoacetamide; one or both of these residues may be primarily responsible for the thiol requirement of lectin activity.
Theoretically, PC-815 is likely to be a more efficacious microbicide than Carraguard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.