A tradeoff exists when considering the delay created by multifunctional prosthesis controllers. Large controller delays maximize the amount of time available for EMG signal collection and analysis (and thus maximize classification accuracy); however, large delays also degrade prosthesis performance by decreasing the responsiveness of the prosthesis. To elucidate an "optimal controller delay" twenty able-bodied subjects performed the Box and Block Test using a device called PHABS (prosthetic hand for able bodied subjects). Tests were conducted with seven different levels of controller delay ranging from nearly 0-300 ms and with two different artificial hand speeds. Based on repeted measures ANOVA analysis and a linear mixed effects model, the optimal controller delay was found to range between approximately 100 ms for fast prehensors and 125 ms for slower prehensors. Furthermore, the linear mixed effects model shows that there is a linear degradation in performance with increasing delay.
The use of surface versus intramuscular electrodes as well as the effect of electrode targeting on pattern-recognition-based multifunctional prosthesis control was explored. Surface electrodes are touted for their ability to record activity from relatively large portions of muscle tissue. Intramuscular electromyograms (EMGs) can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk. However, little work has been done to compare the two. Additionally, while previous investigations have either targeted electrodes to specific muscles or used untargeted (symmetric) electrode arrays, no work has compared these approaches to determine if one is superior. The classification accuracies of pattern-recognition-based classifiers utilizing surface and intramuscular as well as targeted and untargeted electrodes were compared across 11 subjects. A repeated-measures analysis of variance revealed that when only EMG amplitude information was used from all available EMG channels, the targeted surface, targeted intramuscular, and untargeted surface electrodes produced similar classification accuracies while the untargeted intramuscular electrodes produced significantly lower accuracies. However, no statistical differences were observed between any of the electrode conditions when additional features were extracted from the EMG signal. It was concluded that the choice of electrode should be driven by clinical factors, such as signal robustness/stability, cost, etc., instead of by classification accuracy.
These data suggest that PPTs may prove to be valid and reliable measures of pelvic floor somatic pain sensitivity in healthy women. Broader studies including a pelvic pain cohort should be conducted to corroborate these results and determine the technique's external validity and clinical relevance.
This article illuminates the major and often overlooked challenge of untethering soft robotic systems through the context of recent work, in which soft robotic gripper technology enabled by jamming of granular media was applied to a prosthetic jamming terminal device (PJTD). The PJTD's technical and market feasibility was evaluated in a pilot study with two upper-limb amputees. A PJTD prototype was tested against a commercial device (Motion Control electric terminal service with a one degree-of-freedom pinching mechanism) using two existing hand function tests: the first quantified the device's speed in picking and placing small blocks and the second evaluated a person's ability to perform activities of daily living (ADLs). The PJTD prototype performed slightly slower than its commercial counterpart in the first test. While both participants successfully completed all the ADLs with both devices in the second test, the commercial device scored marginally higher. Results suggested that PJTD can have potential benefits over existing terminal devices, such as providing the capability to firmly grasp tools due to the ability of PJTD to conform to arbitrary surfaces and reducing compensatory shoulder movements due to its axisymmetric design. Some downsides were that users reported fatigue while operating the PJTD, as most operations require pushing the PJTD against target objects to adequately conform to them. The greatest drawback for the PJTD is also a major roadblock preventing a number of soft robotic research projects from making an impact in real-world applications: pneumatic technology required for operating the PJTD is currently too large and heavy to enable compact untethered operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.