New emerging embedded system platforms in the realm of highthroughput multimedia, imaging, and signal processing will consist of multiple microprocessors and reconfigurable components. One of the major problems is how to program these platforms in a systematic and automated way so as to satisfy the performance need of applications executed on these platforms.In this paper, we present our system design approach as an efficient solution to this programming problem. We show how for an application written in Matlab, a Kahn Process Network specification can automatically be derived and systematically mapped onto a target platform composed of a microprocessor and an FPGA. Furthermore, we illustrate how the mapping approach is applied on a real-life example, namely an M-JPEG encoder.
Abstract-With ever-increasing system complexities, all major semiconductor roadmaps have identified the need for moving to higher levels of abstraction in order to increase productivity in electronic system design. Most recently, many approaches and tools that claim to realize and support a design process at the so-called electronic system level (ESL) have emerged. However, faced with the vast complexity challenges, in most cases at best, only partial solutions are available. In this paper, we develop and propose a novel classification for ESL synthesis tools, and we will present six different academic approaches in this context. Based on these observations, we can identify such common principles and needs as they are leading toward and are ultimately required for a true ESL synthesis solution, covering the whole design process from specification to implementation for complete systems across hardware and software boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.