We consider the MSO model-checking problem for simple linear loops, or equivalently discrete-time linear dynamical systems, with semialgebraic predicates (i.e., Boolean combinations of polynomial inequalities on the variables). We place no restrictions on the number of program variables, or equivalently the ambient dimension. We establish decidability of the model-checking problem provided that each semialgebraic predicate
either
has intrinsic dimension at most 1,
or
is contained within some three-dimensional subspace. We also note that lifting either of these restrictions and retaining decidability would necessarily require major breakthroughs in number theory.
We consider the problem of deciding ω-regular properties on infinite traces produced by linear loops. Here we think of a given loop as producing a single infinite trace that encodes information about the signs of program variables at each time step. Formally, our main result is a procedure that inputs a prefix-independent ω-regular property and a sequence of numbers satisfying a linear recurrence, and determines whether the sign description of the sequence (obtained by replacing each positive entry with “+”, each negative entry with “−”, and each zero entry with “0”) satisfies the given property. Our procedure requires that the recurrence be simple, i.e., that the update matrix of the underlying loop be diagonalisable. This assumption is instrumental in proving our key technical lemma: namely that the sign description of a simple linear recurrence sequence is almost periodic in the sense of Muchnik, Sem'enov, and Ushakov. To complement this lemma, we give an example of a linear recurrence sequence whose sign description fails to be almost periodic. Generalising from sign descriptions, we also consider the verification of properties involving semi-algebraic predicates on program variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.