There are many scenarios that have been proposed for fifth generation (5G) networks. Some of them, if implemented, will bring fundamental changes at the architectural and node level. One example of such proposed technologies is device-to-device (D2D) communications which will change the nature of conventional cellular network design. D2D permits direct communication between two or more user devices without intervention of the base station (i.e. eNB). D2D can ensure network performance improvement over the traditional cellular network, because it can offload the mobile data traffic from the other devices. However, applying D2D features in a cellular network will bring about more complex interference problems, since D2D communication uses the same band as its underlying cellular communication network. The aim of this research is to investigate interference-related problems caused by D2D communications, affecting the underlying cellular networks, during downlink and uplink transmissions. The paper examines the use of power control methods to mitigate interference. A comparison is offered between fixed power level (FC) with or without power control, and adaptive power controls using two methods (AC1 and AC2), on a base station or on each of the D2D devices, based on the measured signal to interference plus noise ratio (SINR). The simulation results show that both power control methods contribute to improvement of network performance. AC1 and AC2 can improve SINR by about 1 dB and 0.5 dB compared to FC in a downlink transmission, and by 0.5 dB in an uplink transmission.
The clustering network is a solution to improve data-rate transmission in small-cells. In this case, clustering small-cells (CSCs) adopt a multiple antennas concept. The multiple antennas are used to maximize the downlink data-rate transmission at the users, but it requires precoding techniques to minimize interference among CSC users. This paper proposes a block diagonalization (BD) as a precoding technique for minimizing interference among CSC users. The performance of the BD precoding implemented on the clustering network under various numbers of small-cells. The CSC also implements a water-filling power allocation (PA-CoopWF) to distribute the available transmission power along with the CSCs antennas. To show the performance, our paper simulates two types of precoding techniques; those are the proposed BD and minimum mean square error (MMSE) in CSCs. Based on the receiver user parts under the overlapping coordination of CSCs, our method based on the BD precoding achieves considerably higher data-rate transmission compared to the MMSE precoding, especially on larger clusters. The simulation also shows that by implementing CSC with the BD in short-range distances and higher numbers of antennas, it promotes better data-rate performances compared to the MMSE precoding by 2.75 times at distance 100m and 67% at 50 antennas.
This paper proposes a new power allocation algorithm with precoding in cooperative small cell networks (SCNs). A power allocation algorithm based on cooperative water-filling (CoopWF) is proposed and block diagonalization (BD) precoding is adopted to cancel the inter-user interferences. The proposed scheme is easily implementable to SCNs such as femto-cell, metrocell, and pico-cell. Simulation results show that the proposed CoopWF algorithm provides better mean capacity compared to the existing power allocation algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.