A multi-institutional collaborative study was conducted concerning the course of pregnancy and delivery and the incidence of abnormal infants delivered of epileptic women. Of 657 women receiving antiepileptic drugs, 73% delivered live infants, 14% had miscarriage or stillbirth, and 13% underwent induced abortion. In contrast to the above findings, 80% of 162 patients not receiving antiepileptic drugs delivered live infants and 4% had miscarriage or stillbirth. The latter outcome was significantly increased in the medicated patients. In this series, 63 (9.9%) of 638 live births were malformed, 55 (11.5%) being from medicated mothers and 3 (2.3%) from nonmedicated mothers. The incidence of fetal malformation in medicated mothers was thus five times as high as that in nonmedicated mothers. Cleft lip and/or palate and malformations involving the cardiovascular system were found frequently in the infants from medicated mothers. General background factors that might exert teratogenic effects on pregnant patients with epilepsy were studied, and the potential toxicity of antiepileptic drugs to the fetus was also analyzed. In this regard, consideration should be given to whether the patient has partial epileptic seizures, whether the patient herself exhibits any malformation, or whether her previous pregnancy resulted in an abnormal outcome. The incidence of fetal malformation was the highest (12.7%) in the medicated patients who had epileptic seizures during the pregnancy. It is presumed on the basis of the results of analysis of the data that a combination of more than three drugs and a daily dose greater than a certain minimal level is likely to produce malformed infants.
We have developed a new fluorescent sensing probe for double-stranded RNA (dsRNA) by integrating thiazole orange (TO) as a base surrogate into triplex-forming PNA. Our probe forms the thermally stable triplex with the target dsRNA at acidic pH; and the triplex formation is accompanied by the remarkable light-up response of the TO unit. The binding of our probe to the target dsRNA proceeds very rapidly, allowing real-time monitoring of the triplex formation. Importantly, we found the TO base surrogate in our probe functions as a universal base for the base pair opposite the TO unit in the triplex formation. Furthermore, the TO unit is significantly more responsive for the fully matched dsRNA sequence compared to the mismatch-containing sequences, which enables the analysis of the target dsRNA sequence at the single-base pair resolution. The binding and sensing functions of our probe are described for the development of fluorescent probes applicable to sensing biologically relevant dsRNA.
BackgroundBiomarker for usefulness in diagnosing advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is expected. In order to discover novel biomarkers for NAFLD and its pathogenesis, we performed matabolomics screening.Methods(1) The initial cohort was 44 NAFLD patients. (2) This validation cohort was 105 NAFLD patients, 26 primary biliary cirrhosis (PBC) patients, and 48 healthy controls. Using capillary electrophoresis and liquid chromatography with mass spectrometry, we analyzed low molecular weight metabolites in these groups.Results1. In the initial cohort, we found 28 metabolites associated with advanced fibrosis. Among them, 4 sulfated steroids showed the greatest difference. A decrease of dehydroepiandrosterone sulfate (DHEA-S) and 5α-androstan-3β ol-17-one sulfate (etiocholanolone-S) was observed with the progression of fibrosis. Furthermore, 16 hydroxydehydroepiandrosterone sulfate (16-OH-DHEA-S) increased with the progression of fibrosis. 2. In the validation cohort, the decrease of DHEA-S and etiocholanolone-S, as well as the increase of 16-OH-DHEA-S, with the progression of fibrosis was confirmed. The 16-OH-DHEA-S/DHEA-S ratio and 16-OH-DHEA-S/etiocholanolone-S ratio were even more strongly associated with the grade of fibrosis. Among PBC patients, 16-OH-DHEA-S tended to be higher in stages 3 and 4 than in stages 1 and 2. However, levels of DHEA-S, etiocholanolone-S, and the two ratios were not associated with the stage of PBC.ConclusionSeveral metabolic products were found to be biomarkers of fibrosis in NAFLD and could also be useful for diagnosis of this condition. Our findings suggested disturbance of hormone metabolism in NAFLD and might lead to the development of new therapy.Electronic supplementary materialThe online version of this article (doi:10.1007/s00535-013-0766-5) contains supplementary material, which is available to authorized users.
A series of triplex-forming peptide nucleic acid (TFP) probes carrying a thiazole orange (TO) base surrogate through an alkyl linker was synthesized, and the interactions between these so-called tFIT probes and purine-rich sequences within double-stranded RNA (dsRNA) were examined. We found that the TO base surrogate linker significantly affected both the binding affinity and the fluorescence response upon triplex formation with the target dsRNA. Among the probes examined, the TO base surrogate connected through the propyl linker in the tFIT probes increased the binding affinity by a factor of ten while maintaining its function as the fluorescent universal base. Isothermal titration calorimetry experiments revealed that the increased binding affinity resulted from the gain in the binding enthalpy, which could be explained by the enhanced π-stacking interaction between the TO base surrogate and the dsRNA part of the triplex. We expect that these results will provide a molecular basis for designing strong binding tFIT probes for fluorescence sensing of various kinds of purine-rich dsRNAs sequences including those carrying a pyrimidine-purine inversion. The obtained data also offers a new insight into further development of the universal bases incorporated in TFP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.