The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented.
Disciplines
Engineering Physics | Physics
Comments
This is a manuscript of an article from Nuclear Instruments and Methods in Physics Research
We revisit the globally coupled map lattice (GCML). We show that in the so called turbulent regime various periodic cluster attractor states are formed even though the coupling between the maps are very small relative to the nonlinearity in the element maps. Most outstanding is a maximally symmetric three cluster attractor in period three motion (MSCA) due to the foliation of the period three window of the element logistic maps. An analytic approach is proposed which explains successfully the systematics of various periodicity manifestations in the turbulent regime. The linear stability of the period three cluster attractors is investigated. 05.45.+b,05.90.+m
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.