SUMMARY Plasmodium infection begins with the bite of an anopheline mosquito, when sporozoites along with saliva are injected into a vertebrate host. The role of the host responses to mosquito saliva components in malaria remains unclear. We observed that antisera against Anopheles gambiae salivary glands partially protected mice from mosquito-borne Plasmodium infection. Specifically, antibodies to A. gambiae TRIO (AgTRIO), a mosquito salivary gland antigen, contributed to the protection. Mice administered AgTRIO antiserum showed lower Plasmodium liver burden and decreased parasitemia when exposed to infected mosquitoes. Active immunization with AgTRIO was also partially protective against Plasmodium berghei infection. A combination of AgTRIO antiserum and antibodies against Plasmodium circumsporozoite protein, a vaccine candidate, further decreased P. berghei infection. In humanized mice, AgTRIO antiserum afforded some protection against mosquito-transmitted Plasmodium falciparum. AgTRIO antiserum reduced the movement of sporozoites in the murine dermis. AgTRIO may serve as an arthropod-based target against Plasmodium to combat malaria.
We report the assembly of the 14,054 bp near complete sequencing of the mitochondrial genome of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which we subsequently used to estimate divergence and relationships within the lepidopteran lineage. The arrangement and orientation of the 13 protein-coding, 2 rRNA, and 19 tRNA genes sequenced was typical of insect mitochondrial DNA sequences described to date. The sequence contained a high A+T content of 80.1% and a bias for the use of codons with A or T nucleotides in the 3rd position. Transcript mapping with midgut and salivary gland ESTs for mitochondrial genome annotation showed that translation from protein-coding genes initiates and terminates at standard mitochondrial codons, except for the coxI gene, which may start from an arginine CGA codon. The genomic copy of coxII terminates at a T nucleotide, and a proposed polyadenylation mechanism for completion of the TAA stop codon was confirmed by comparisons to EST data. EST contig data further showed that mature M. vitrata mitochondrial transcripts are monocistronic, except for bicistronic transcripts for overlapping genes nd4/nd4L and nd6/cytb, and a tricistronic transcript for atp8/atp6/coxIII. This processing of polycistronic mitochondrial transcripts adheres to the tRNA punctuated cleavage mechanism, whereby mature transcripts are cleaved only at intervening tRNA gene sequences. In contrast, the tricistronic atp8/atp6/coxIII in Drosophila is present as separate atp8/atp6 and coxIII transcripts despite the lack of an intervening tRNA. Our results indicate that mitochondrial processing mechanisms vary between arthropod species, and that it is crucial to use transcriptional information to obtain full annotation of mitochondrial genomes.
Head and body lice are both blood-feeding parasites of humans although only the body louse is a potent disease vector. In spite of numerous morphological and life history differences, head and body lice have recently been hypothesized to be ecotypes of the same species. We took a comparative genomics approach to measure nucleotide diversity by comparing expressed sequence tag data sets from head and body lice. A total of 10 771 body louse and 10 770 head louse transcripts were predicted from a combined assembly of Roche 454 and Illumina sequenced cDNAs from whole body tissues collected at all life stages and during pesticide exposure and bacterial infection treatments. Illumina reads mapped to the 10 775 draft body louse gene models from the whole genome assembly predicted nine presence/absence differences, but PCR confirmation resulted in a single gene difference. Read per million base pair estimates indicated that 14 genes showed significant differential expression between head and body lice under our treatment conditions. One novel microRNA was predicted in both lice species and 99% of the 544 transcripts from Candidatus riesia indicate that they share the same endosymbiont. Overall, few differences exist, which supports the hypothesis that these two organisms are ecotypes of the same species.
The legume pod borer, Maruca vitrata (Lepidoptera: Crambidae), is an insect pest species of crops grown by subsistence farmers in tropical regions of Africa. We present the de novo assembly of 3729 contigs from 454- and Sanger-derived sequencing reads for midgut, salivary, and whole adult tissues of this non-model species. Functional annotation predicted that 1320 M. vitrata protein coding genes are present, of which 631 have orthologs within the Bombyx mori gene model. A homology-based analysis assigned M. vitrata genes into a group of paralogs, but these were subsequently partitioned into putative orthologs following phylogenetic analyses. Following sequence quality filtering, a total of 1542 putative single nucleotide polymorphisms (SNPs) were predicted within M. vitrata contig assemblies. Seventy one of 1078 designed molecular genetic markers were used to screen M. vitrata samples from five collection sites in West Africa. Population substructure may be present with significant implications in the insect resistance management recommendations pertaining to the release of biological control agents or transgenic cowpea that express Bacillus thuringiensis crystal toxins. Mutation data derived from transcriptome sequencing is an expeditious and economical source for genetic markers that allow evaluation of ecological differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.