Fibre reinforced plastics feature versatile function‐integrative capabilities, e.g. the possibility to realise embedded Structural Health Monitoring (SHM) systems. Material‐compatible sensors are a prerequisite for a robust and reliable function of such systems. Among others, sensors based on carbon fibres are in the focal point of research due to their high material compatibility. The contribution proposes a novel continuous strain sensor based on embedded carbon fibres. In opposition to typical carbon fibre sensors, the presented measurement principle is based on the reversible opening and closing of aligned carbon fibre fragments. The phenomenological effects are investigated by a combined electrical, mechanical and optical analysis. The sensor features a strain sensitivity that is up to four orders of magnitude higher than the one of current carbon fibre sensors. For the first time, the application of the electrical time domain reflectometry for a spatially resolved strain measurement with carbon fibre sensors is presented here. In addition a damage localisation capability with an observed spatial resolution in the lower mm‐range is possible.
The investigated hybrid carbon fiber reinforced plastics-elastomer-metal laminates (HyCEML) offer the potential of tailored structural materials with adaptable damping properties. Conventional fiber metal laminates, like glass laminate aluminum reinforced epoxy are already widely spread in the aviation industry owing to their outstanding fatigue behavior. By integrating an elastomeric interlayer, the glass fibers can be substituted by carbon fibers and damping properties of these laminates can be adjusted. The viscoelastic interlayer dissipates energy within the laminate by inducing shear strain during bending, which is commonly known as constrained layer damping. The aim of this paper is the description of the vibration and damping behavior of HyCEML over a wide temperature and frequency range by using different test methods. Dynamic mechanical analysis is used for the individual polymeric constituents and coupon specimens and modal analysis is used with different specimen geometries up to a component sized panel. In addition, analytical and numerical approaches complement the experiments and lead to a deeper understanding of the vibration and damping behavior. Owing to the high damping, already at frequencies of 5 kHz only running waves can be detected for the investigated panel size. The discussion of different test methods helps to identify material and wavelength dependent effects, but also possible adverse effects of certain methods.
Evanescent morphing in combination with an original concept of Compressible Constrained Layer Damping (CCLD) is a novel and promising approach for dynamic behaviour adaptation. The crucial component of the CCLD is a compressible intermediate layer with its thickness and material properties controlled by fluid actuation, enabling the adjustment of the damping and stiffness of the overall system. To estimate the potential of the CCLD, an analytical model was developed which describes the vibration behaviour of the overall structure, taking into account the compression-driven properties of the intermediate layer. The results confirm the principal correctness of the initial theoretical assumptions regarding the adaptive dynamic behaviour of structures with CCLD treatment. A significant vibration mitigation as well as a high adaptability of dynamic behaviour were observed, however, they show a complex dependence on the system configuration. Nevertheless, the developed analytical modelling approach can already be used for a preliminary system design. Besides the analysed polymer-based foams as the intermediate layer, nonwovens also exhibit compression-dependent shear properties and can therefore be used in CCLD. First preliminary investigations show that the damping performance is on average about ten times better than that of the polymeric foams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.