The declining production of commercially important eucheumatoids related to serious problems, like increasing susceptibility to ice–ice disease and epiphytism, may be ameliorated by nutrition. This ushered an increasing interest in incorporating seaweeds into an integrated multi‐trophic aquaculture (IMTA) setup to take up excess inorganic nutrients produced by fish farms for their nourishment. In this regard, it is important to understand the nutrient uptake capacity of candidate seaweeds for incorporation into an IMTA system. Here, we examined the growth, nitrate (NO3‐) uptake kinetics, and biofiltration potential of Eucheuma denticulatum and three strains of Kappaphycus alvarezii (G‐O2, TR‐C16, and SW‐13) with distinct thallus morphologies. The NO3‐ uptake rates of the samples were determined under a range of NO3‐ concentrations (1–48 µM) and uptake rates were fitted to the Michaelis–Menten saturation equation. Among the examined eucheumatoids, only SW‐13 had a linear response to NO3‐ concentration while other strains had uptake rates that followed the Michaelis–Menten saturation equation. Eucheuma denticulatum had the lowest Km (9.78 ± 1.48 µM) while G‐O2 had the highest Vmax (307 ± 79.3 µmol · g−1 · min−1). The efficiency in NO3‐ uptake (highest Vmax/Km and α) was translated into the highest growth rate (3.41 ± 0.58% · d−1) measured in E. denticulatum. Our study provided evidence that eucheumatoids could potentially take up large amount of NO3‐ and fix CO2 when cultivated proximate to a fish farm as one component of an IMTA system. During a 45 ‐d cultivation period of eucheumatoids, as much as 370 g NO3‐ can be sequestered by every 1 kg initial biomass of E. denticulatum growing at 3% · d−1. Furthermore, based on our unpublished photosynthetic measurements, the congeneric K. striatus can fix 27.5 g C · kg−1 DW during a 12 h daylight period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.