Link to publication on Research at Birmingham portal General rightsUnless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.• Users may freely distribute the URL that is used to identify this publication.• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version. Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
The CH(2)I+O(2) reaction has been studied using laser flash photolysis followed by absorption spectroscopy, laser-induced fluorescence spectroscopy and mass spectrometry. The rates of formation of IO and CH(2)O were found to be dependent upon the concentration of CH(2)I(2) under pseudo-first-order conditions ([O(2)]≫[CH(2)I(2)]), demonstrating that IO and CH(2)O are not formed directly from the title reaction, in contrast to recent investigations by Enami et al. It is proposed that the reaction proceeds via the formation of the peroxy radical species CH(2)IO(2), which undergoes self-reaction to form CH(2)IO, and which decomposes to CH(2)O+I, and that in laboratory systems IO is formed via the reaction I+CH(2)IO(2). The absorption spectrum of a species assigned to CH(2)IO(2) was observed in the range 310-400 nm with a maximum absorption at 327.2 nm of σ≥1.7×10(-18) cm(2) molecule(-1). A modelling study enabled the room temperature rate coefficients for the CH(2)IO(2)+CH(2)IO(2) self-reaction and the I+CH(2)IO(2) reaction to be confined within the ranges (6-12)×10(-11) cm(3) molecule(-1) s(-1), and (1-2)×10(-11) cm(3) molecule(-1) s(-1), respectively. In the atmosphere, CH(2)IO(2) will slowly react with other radicals to release iodine atoms, which can then form IO via reaction with ozone. Slow formation of IO means that lower concentrations are formed, which leads to a lower propensity to form particles as the precursor molecule OIO forms at a rate which is dependent on the square of the IO concentration.
Methods are described for detecting precipitation of ionisable drugs under conditions of changing pH, estimating kinetic solubility from the onset of precipitation, and measuring solubility by chasing equilibrium. Definitions are presented for kinetic, equilibrium, and intrinsic solubility of ionisable drugs, supersaturation and subsaturation, and for chasers and non-chasers, which are two classes of ionisable drug with significantly different solubility properties. The use of Bjerrum Curves and Neutral-Species Concentration Profiles to depict solubility properties are described and illustrated with case studies showing super-dissolving behaviour, conversion between crystalline forms and enhancement of solubility through supersaturation, and the use of additives and simulated gastrointestinal fluids.
The temperature and pressure dependence of the rate coefficient for the reaction of iodine monoxide radicals with dimethyl sulfide (DMS), IO + DMS --> I + DMSO (1), was studied using laser induced fluorescence (LIF) to monitor the temporal profile of IO following 351 nm photolysis of RI/DMS/NO2/He (RI = CH3I/CF3I) mixtures. The study was performed over the range T = 296-468 K yielding a positive activation energy and k1 = (9.6 +/- 8.8) x 10(12) exp{-(1816 +/- 397)/T}. No dependence was observed on total pressure between 5-300 Torr. The rate coefficient at 296 K was determined as (2.0 +/- (0.6)(0.4)) x 10(-14) cm3 molecule(-1) s(-1), more than an order of magnitude smaller than a recent study but in reasonable agreement with the previous literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.