By introducing additional T-DNA borders into a binary plasmid used in Agrobacterium-mediated plant transformation, previous studies have demonstrated that the marker gene and the gene of interest (GOI) can be carried by independent T-strands, which sometimes integrate in unlinked loci in the plant genome. This allows the recovery of marker-free transgenic plants through genetic segregation in the next generation. In this study, we have found that by repositioning the selectable marker gene in the backbone and leaving only the GOI in the T-DNA region, a regular two-border binary plasmid was able to generate marker-free transgenic maize plants more efficiently than a conventional single binary plasmid with multiple T-DNA borders. These results also provide evidence that both the right and left borders can initiate and terminate T-strands. Such non-canonical initiation and termination of T-strands may be the basis for the elevated frequencies of cotransformation and unlinked insertions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.