Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays an essential role in lipid and glucose homeostasis. It is recognized as the receptor of the thiazolidinediones-a synthetic class of anti-diabetic drugs-and is the target of many drug discovery efforts because of its role in disease states, such as type II diabetes mellitus. In this study, structure-based virtual screening of the PPAR-gamma ligand binding domain against a natural product library has revealed 29 potential agonists. In vitro testing of this list identified six flavonoids to have stimulated PPAR-gamma transcriptional activity in a transcriptional factor assay. Of these, flavonoid-psi-baptigenin-was classed as the most potent PPAR-gamma agonist, possessing low micromolar affinity (EC(50) = 2.9 microM). Further in vitro testing using quantitative RT-PCR and immunoblotting experiments demonstrated that psi-baptigenin activated PPAR-gamma mRNA (4.1 +/- 0.2-fold) and protein levels (2.9 +/- 0.4-fold) in THP-1 macrophages. Moreover, psi-baptigenin's-induced PPAR-gamma enhancement was abolished in the presence of a selective PPAR-gamma antagonist, GW9662. Induced-fit docking investigations provide a detailed understanding on the ligands' mechanism of action, suggesting five of the active flavonoids induce significant conformational change in the receptor upon binding. Overall, these results offer insight into various naturally derived flavonoids as leads/templates for development of novel PPAR-gamma ligands.
In traditional Chinese medicine, Gynostemma pentaphyllum (Thunb.) Makino is a herbal drug of extreme versatility and has been extensively researched in China. The dammarane saponins isolated from Gynostemma pentaphyllum, namely gypenosides or gynosaponins, are believed to be the active components responsible for its various biological activities and reported clinical effects. This review attempts to encompass the available literature on Gynostemma pentaphyllum, from its cultivation to the isolation of its chemical entities and a summary of its diverse pharmacological properties attributed to its gypenoside content. Other aspects such as toxicology and pharmacokinetics are also discussed. In vitro and in vivo evidence suggests that Gynostemma pentaphyllum may complement the popular herbal medicine, Panax ginseng, as it also contains a high ginsenoside content and exhibits similar biological activities.
Abbreviations
PPARs are transcription factors belonging to the superfamily of nuclear receptors. PPAR-alpha is involved in the regulation of fatty acid (FA) uptake and oxidation, inflammation and vascular function, while PPAR-gamma participates in FA uptake and storage, glucose homeostasis and inflammation. The PPARs are thus major regulators of lipid and glucose metabolism. Synthetic PPAR-alpha or PPAR-gamma agonists have been widely used in the treatment of dyslipidaemia, hyperglycaemia and their complications. However, they are associated with an incidence of adverse events. Given the favourable metabolic effects of both PPAR-alpha and PPAR-gamma activators, as well as their potential to modulate vascular disease, combined PPAR-alpha/-gamma activation has recently emerged as a promising concept, leading to the development of mixed PPAR-alpha/-gamma activators. However, some major side effects associated with the synthetic dual activators have been reported. It is unclear whether this is a specific effect of the particular synthetic compounds or a class effect. To date, a medication that may combine the beneficial metabolic effects of PPAR-alpha and PPAR-gamma activation with fewer undesirable side effects has not been successfully developed. Pomegranate plant parts are used traditionally for the treatment of various disorders. However, only pomegranate flower has been prescribed in Unani and Ayurvedic medicines for the treatment of diabetes. This review provides a new understanding of the dual PPAR-alpha/-gamma activator properties of pomegranate flower in the potential treatment of diabetes and its associated complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.