For a deeper understanding of the functional behavior of energy materials, it is necessary to investigate their microstructure, e.g., via imaging techniques like scanning electron microscopy (SEM). However, active materials are often heterogeneous, necessitating quantification of features over large volumes to achieve representativity which often requires reduced resolution for large fields of view. Cracks within Li-ion electrode particles are an example of fine features, representative quantification of which requires large volumes of tens of particles. To overcome the trade-off between the imaged volume of the material and the resolution achieved, we deploy generative adversarial networks (GAN), namely SRGANs, to super-resolve SEM images of cracked cathode materials. A quantitative analysis indicates that SRGANs outperform various other networks for crack detection within aged cathode particles. This makes GANs viable for performing super-resolution on microscopy images for mitigating the trade-off between resolution and field of view, thus enabling representative quantification of fine features.
Laue microdiffraction is an X-ray diffraction technique that allows for the non-destructive acquisition of spatial maps of crystallographic orientation and the strain state of (poly)crystalline specimens. To do so, diffraction patterns, consisting of thousands of Laue spots, are collected and analyzed at each location of the spatial maps. Each spot of these so-called Laue patterns has to be accurately characterized with respect to its position, size and shape for subsequent analyses including indexing and strain analysis. In the present paper, several approaches for estimating these descriptors that have been proposed in the literature, such as methods based on image moments or function fitting, are reviewed. However, with the increasing size and quantity of Laue image data measured at synchrotron sources, some datasets become unfeasible in terms of computational requirements. Moreover, for irregular Laue spots resulting, e.g., from overlaps and extended crystal defects, the exact shape and, more importantly, the position are ill-defined. To tackle these shortcomings, a procedure using convolutional neural networks is presented, allowing for a significant acceleration of the characterization of Laue spots, while simultaneously estimating the quality of a Laue spot for further analyses. When tested on unseen Laue spots, this approach led to an acceleration of 77 times using a GPU while maintaining high levels of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.