BackgroundLate onset sepsis (LOS) in preterm infants is associated with considerable morbidity and mortality. While studies have implicated gut bacteria in the aetiology of the disease, functional analysis and mechanistic insights are generally lacking. We performed temporal bacterial (n = 613) and metabolomic (n = 63) profiling on extensively sampled stool from 7 infants with LOS and 28 matched healthy (no LOS or NEC) controls.ResultsThe bacteria isolated in diagnostic blood culture usually corresponded to the dominant bacterial genera in the gut microbiome. Longitudinal changes were monitored based on preterm gut community types (PGCTs), where control infants had an increased number of PGCTs compared to LOS infants (P = 0.011). PGCT 6, characterised by Bifidobacteria dominance, was only present in control infants. Metabolite profiles differed between LOS and control infants at diagnosis and 7 days later, but not 7 days prior to diagnosis. Bifidobacteria was positively correlated with control metabolites, including raffinose, sucrose, and acetic acid.ConclusionsUsing multi-omic analysis, we show that the gut microbiome is involved in the pathogenesis of LOS. While the causative agent of LOS varies, it is usually abundant in the gut. Bifidobacteria dominance was associated with control infants, and the presence of this organism may directly protect, or act as a marker for protection, against gut epithelial translocation. While the metabolomic data is preliminary, the findings support that gut development and protection in preterm infants is associated with increased in prebiotic oligosaccharides (e.g. raffinose) and the growth of beneficial bacteria (e.g. Bifidobacterium).Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-017-0295-1) contains supplementary material, which is available to authorized users.
BackgroundThe preterm microbiome is crucial to gut health and may contribute to necrotising enterocolitis (NEC), which represents the most significant pathology affecting preterm infants. From a cohort of 318 infants, <32 weeks gestation, we selected 7 infants who developed NEC (defined rigorously) and 28 matched controls. We performed detailed temporal bacterial (n = 641) and metabolomic (n = 75) profiling of the gut microbiome throughout the disease.ResultsA core community of Klebsiella, Escherichia, Staphyloccocus, and Enterococcus was present in all samples. Gut microbiota profiles grouped into six distinct clusters, termed preterm gut community types (PGCTs). Each PGCT reflected dominance by the core operational taxonomic units (OTUs), except of PGCT 6, which had high diversity and was dominant in bifidobacteria. While PGCTs 1–5 were present in infants prior to NEC diagnosis, PGCT 6 was comprised exclusively of healthy samples. NEC infants had significantly more PGCT transitions prior to diagnosis. Metabolomic profiling identified significant pathways associated with NEC onset, with metabolites involved in linoleate metabolism significantly associated with NEC diagnosis. Notably, metabolites associated with NEC were the lowest in PGCT 6.ConclusionsThis is the first study to integrate sequence and metabolomic stool analysis in preterm neonates, demonstrating that NEC does not have a uniform microbial signature. However, a diverse gut microbiome with a high abundance of bifidobacteria may protect preterm infants from disease. These results may inform biomarker development and improve understanding of gut-mediated mechanisms of NEC.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0216-8) contains supplementary material, which is available to authorized users.
Background: Probiotics are live microbial supplements that colonize the gut and potentially exert health benefit to the host. Objectives: We aimed to determine the impact of a probiotic (Infloran®: Lactobacillus acidophilus-NCIMB701748 and Bifidobacterium bifidum-ATCC15696) on the bacterial and metabolic function of the preterm gut while in the neonatal intensive care unit (NICU) and following discharge. Methods: Stool samples (n = 88) were collected before, during, and after probiotic intake from 7 patients, along with time-matched controls from 3 patients. Samples were also collected following discharge home from the NICU. Samples underwent bacterial profiling analysis by 16S rRNA gene sequencing and quantitative PCR (qPCR), as well as metabolomic profiling using liquid chromatography mass spectrometry. Results: Bacterial profiling showed greater Bifidobacterium (15.1%) and Lactobacillus (4.2%) during supplementation compared to the control group (4.0% and 0%, respectively). While Lactobacillus became reduced after the probiotic had been stopped, Bifidobacterium remained high following discharge, suggestive of successful colonisation. qPCR analysis showed a significant increase (p ≤ 0.01) in B. bifidum in infants who received probiotic treatment compared to controls, but no significant increase was observed for L. acidophilus (p = 0.153). Metabolite profiling showed clustering based on receiving probiotic or matched controls, with distinct metabolites associated with probiotic administration. Conclusions: Probiotic species successfully colonise the preterm gut, reducing the relative abundance of potentially pathogenic bacteria, and effecting gut functioning. Bifidobacterium (but not Lactobacillus) colonised the gut in the long term, suggesting the possibility that therapeutically administered probiotics may continue to exert important functional effects on gut microbial communities in early infancy.
Background:Necrotising enterocolitis (NEC) and late-onset sepsis (LOS) are the leading causes of death among preterm infants in the developed world. This study aimed to explore the serum proteome and metabolome longitudinally in preterm infants with NEC or LOS, matched to controls.Methods:Nineteen patients (10 cases, 9 controls) were included. A sample 14 d prior to and following, as well as at disease diagnosis, was included for cases. Controls had serum matched at diagnosis for corresponding case. All samples (n = 39) underwent shotgun proteomic analysis, and 37 samples also underwent metabolomics analysis using ultra performance liquid chromatography–tandem mass spectrometry.Results:The proteomic and metabolomic profiles of serum were comparable between all infants. Eight proteins were associated with NEC and four proteins were associated with LOS. C-reactive protein was increased in all NEC patients at diagnosis.Conclusion:No single protein or metabolite was detected in all NEC or LOS cases which was absent from controls; however, several proteins were identified which were associated with disease status. The differing expression of these proteins between diseased infants potentially relates to differing pathophysiology of disease. Thus, it is unlikely a single biomarker exists for NEC and/or LOS.
The FF product investigated in this study reduced growth, intestinal function, and protein utilization in DHM-fed preterm pigs, relative to BC as fortifier. The relevance of BC as an alternative nutrient fortifier for preterm infants should be tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.