No abstract
Advanced packaging technologies continue to enable the semiconductor industry to meet the needs for ever thinner, smaller and faster components required in mobile devices and other high performance applications. However, the increase in chip I/O count, driven by Moore's law, and the ability to produce FinFETs below 10nm has presented numerous additional challenges to the existing advanced packaging processes. Furthermore, unlike Moore's law, which predicted the number of transistors in a dense integrated circuit to double approximately every two years, advanced packaging is experiencing an alternate “law”; where instead of the number of transistors increasing, it is the number of functions increasing, within the ever decreasing volume constraints of the final product that drives the technology roadmap. Inevitably, as functionality increases, so does the process complexity and cost. And in the very cost sensitive advanced packaging arena, Outsourced Semiconductor Assembly and Test suppliers (OSATs) need to compensate by reducing their manufacturing costs. This requires the OSAT to reduce material costs, increase throughput, yield, and look for new ways to reduce the number of process steps. One of the ways in which the OSATs have reduced the cost of materials is by removing the silicon wafer from the backend processing altogether; using epoxy mold compound (EMC) to create reconstituted wafers, or by using glass carriers. In the case of glass carriers, it is often the case, where the dice are attached face down on the carrier and subsequent processing prevents the front side patterns from being visible from the top side of the composite stack, even with Infrared (IR) imaging. In this particular case, an additional lithography “clear out” window is defined in photoresist over the alignment mark so the opaque film can be etched away from the alignment mark, the resist is then stripped and cleaned. This additional processing is obviously costly and time consuming. This paper specifically focuses on the concepts, methodology, and performance of a stepper based photolithography solution that utilizes a photoresist latent image to provide temporary alignment marks for the lithography process, removing the need for the additional patterning and etching steps. This revolutionary system employs a backside camera, to align to die through the carrier. A separate exposure unit, calibrated to the alignment camera center, exposes temporary latent image targets which are then detected by the system's regular alignment system during the normal stepper lithography operation. The performance data for the alignment, overlay, and latent image depth control are discussed in detail. The final analysis proves that overlay of < 2um is readily achievable, with no impact on system throughput.
With demands for shrinking footprints and increasing I/O of electronic components, there is an increasing interest in electrodeposited Cu pillar structures for Package on Package (PoP) interconnects. One example of interest involves a 3D package integration approach with the memory mounted above the processor for mobile applications. This paper will explore the processes required and discuss the challenges for Cu pillar fabrication of PoP interconnects at sub 100um pitches. The test vehicles will include variables such as pillar diameter and pitch for a 200um thick liquid film negative tone plating resist on a 300mm wafer format. The high-density pillar pitch is expected to present challenges to resist material applications, lithography capability, and plating capability. Work for this paper is supported by major material and tool suppliers for resist materials, lithography tools, and plating chemistries & plating tools. JSR Micro, Rudolph Technologies, Atotech
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.