DNA breaks appear to be rapidly repaired and vitrification of oocytes inside pre-antral follicles by the Cryo-Top method does not appear to increase risks of abnormal imprinting or disturbances in spindle formation and chromosome segregation.
Maternal effect genes code for oocyte proteins that are important for early embryogenesis. Transcription in oocytes does not take place from the onset of meiotic progression until zygotic genome activation. During this period, protein levels are regulated posttranscriptionally, for example by poly(A) tail length. Posttranscriptional regulation may be impaired in preovulatory and postovulatory aged oocytes, caused by delayed ovulation or delayed fertilization, respectively, and may lead to developmental defects. We investigated transcript levels and poly(A) tail length of ten maternal effect genes in in vivo- and in vitro- (follicle culture) grown oocytes after pre- and postovulatory aging. Quantitative RT-PCR was performed using random hexamer-primed cDNA to determine total transcript levels and oligo(dT)16-primed cDNA to analyze poly(A) tail length. Transcript levels of in vivo preovulatory-aged oocytes remained stable except for decreases in Brg1 and Tet3. Most genes investigated showed a tendency towards increased poly(A) content. Polyadenylation of in vitro preovulatory-aged oocytes was also increased, along with transcript level declines of Trim28, Nlrp2, Nlrp14 and Zar1. In contrast to preovulatory aging, postovulatory aging of in vivo- and in vitro-grown oocytes led to a shortening of poly(A) tails. Postovulatory aging of in vivo-grown oocytes resulted in deadenylation of Nlrp5 after 12 h, and deadenylation of 4 further genes (Tet3, Trim28, Dnmt1, Oct4) after 24 h. Similarly, transcripts of in vitro-grown oocytes were deadenylated after 12 h of postovulatory aging (Tet3, Trim28, Zfp57, Dnmt1, Nlrp5, Zar1). This impact of aging on poly(A) tail length may affect the timed translation of maternal effect gene transcripts and thereby contribute to developmental defects.
STUDY QUESTIONIs the postovulatory aging-dependent differential decrease of mRNAs and polyadenylation of mRNAs coded by maternal effect genes associated with altered abundance and distribution of maternal effect and RNA-binding proteins (MSY2)?SUMMARY ANSWERPostovulatory aging results in differential reduction in abundance of maternal effect proteins, loss of RNA-binding proteins from specific cytoplasmic domains and critical alterations of pericentromeric proteins without globally affecting protein abundance.WHAT IS KNOWN ALREADYOocyte postovulatory aging is associated with differential alteration in polyadenylation and reduction in abundance of mRNAs coded by selected maternal effect genes. RNA-binding and -processing proteins are involved in storage, polyadenylation and degradation of mRNAs thus regulating stage-specific recruitment of maternal mRNAs, while chromosomal proteins that are stage-specifically expressed at pericentromeres, contribute to control of chromosome segregation and regulation of gene expression in the zygote.STUDY DESIGN, SIZE, DURATIONGerminal vesicle (GV) and metaphase II (MII) oocytes from sexually mature C57B1/6J female mice were investigated. Denuded in vivo or in vitro matured MII oocytes were postovulatory aged and analyzed by semiquantitative confocal microscopy for abundance and localization of polyadenylated RNAs, proteins of maternal effect genes (transcription activator BRG1 also known as ATP-dependent helicase SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and NOD-like receptor family pyrin domain containing 5 (NLRP5) also known as MATER), RNA-binding proteins (MSY2 also known as germ cell-specific Y-box-binding protein, YBX2), and post-transcriptionally modified histones (trimethylated histone H3K9 and acetylated histone H4K12), as well as pericentromeric ATRX (alpha thalassemia/mental retardation syndrome X-linked, also termed ATP-dependent helicase ATRX or X-linked nuclear protein (XNP)). For proteome analysis five replicates of 30 mouse oocytes were analyzed by selected reaction monitoring (SRM).MATERIAL AND METHODSGV and MII oocytes were obtained from large antral follicles or ampullae of sexually mature mice, respectively. Denuded MII oocytes were aged for 24 h post ovulation. For analysis of distribution and abundance of polyadenylated RNAs fixed oocytes were in situ hybridized to Cy5 labeled oligo(dT)20 nucleotides. Absolute quantification of protein concentration per oocyte of selected proteins was done by SRM proteome analysis. Relative abundance of ATRX was assessed by confocal laser scanning microscopy (CLSM) of whole mount formaldehyde fixed oocytes or after removal of zona and spreading. MSY2 protein distribution and abundance was studied in MII oocytes prior to, during and after exposure to nocodazole, or after aging for 2 h in presence of H2O2 or for 24 h in presence of a glutathione donor, glutathione ethylester (GEE).MAIN RESULTS AND ROLE OF CHANCEThe significant reduction in abundance of pr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.