Bacteriophages are natural predators of bacteria and may mitigate Escherichia coli O157:H7 in cattle and their environment. As bacteriophages targeted to E. coli O157:H7 (phages) lose activity at low pH, protection from gastric acidity may enhance efficacy of orally administered phages. Polymer encapsulation of four phages, wV8, rV5, wV7, and wV11, and exposure to pH 3.0 for 20 min resulted in an average 13.6% recovery of phages after release from encapsulation at pH 7.2. In contrast, untreated phages under similar conditions had a complete loss of activity. Steers (n = 24) received 10(11) CFU of naladixic acid-resistant E. coli O157:H7 on day 0 and were housed in six pens of four steers. Two pens were control (naladixic acid-resistant E. coli O157:H7 only), and the remaining pens received polymer-encapsulated phages (Ephage) on days -1, 1, 3, 6, and 8. Two pens received Ephage orally in gelatin capsules (bolus; 10(10) PFU per steer per day), and the remaining two pens received Ephage top-dressed on their feed (feed; estimated 10(11) PFU per steer per day). Shedding of E. coli O157:H7 was monitored for 10 weeks by collecting fecal grab and hide swab samples. Acceptable activity of mixed phages at delivery to steers was found for bolus and feed, averaging 1.82 and 1.13 x 10(9) PFU/g, respectively. However, Ephage did not reduce shedding of naladixic acid-resistant E. coli O157:H7, although duration of shedding was reduced by 14 days (P < 0.1) in bolus-fed steers as compared with control steers. Two successful systems for delivery of Ephage were developed, but a better understanding of phage-E. coli O157:H7 ecology is required to make phage therapy a viable strategy for mitigation of this organism in feedlot cattle.
BackgroundBacteriophages (phages) have been used extensively as analytical tools to type bacterial cultures and recently for control of zoonotic foodborne pathogens in foods and in animal reservoirs.MethodsWe examined the host range, morphology, genome and proteome of the lytic E. coli O157 phage rV5, derived from phage V5, which is a member of an Escherichia coli O157:H7 phage typing set.ResultsPhage rV5 is a member of the Myoviridae family possessing an icosahedral head of 91 nm between opposite apices. The extended tail measures 121 x 17 nm and has a sheath of 44 x 20 nm and a 7 nm-wide core in the contracted state. It possesses a 137,947 bp genome (43.6 mol%GC) which encodes 233 ORFs and six tRNAs. Until recently this virus appeared to be phylogenetically isolated with almost 70% of its gene products ORFans. rV5 is closely related to coliphages Delta and vB-EcoM-FY3, and more distantly related to Salmonella phages PVP-SE1 and SSE-121, Cronobacter sakazakii phage vB_CsaM_GAP31, and coliphages phAPEC8 and phi92. A complete shotgun proteomic analysis was carried out on rV5, extending what had been gleaned from the genomic analyses. Host range studies revealed that rV5 is active against several other E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.