Psoriasis is a T helper type 17 autoimmune disease associated with an increased risk cardiovascular events and mortality. Ustekinumab, an antibody to p40, blocks cytokines IL-12 and IL-23, and is a highly effective and safe treatment for psoriasis. We conducted a randomized double-blinded placebo-controlled trial to determine the effect of ustekinumab on aortic vascular inflammation (AVI) measured by imaging, and key biomarkers of inflammation, lipid, and glucose metabolism in the blood of patients with moderate-to-severe psoriasis. A total of 43 patients were randomized, and at week 12, ustekinumab-treated patients had a e18.65% (95% confidence interval ¼ e29.45% to e7.85%) reduction in AVI, a reduction in inflammatory biomarkers, and an increase in apolipoprotein B lipoproteins compared with placebo. At week 12, placebo patients were crossed over such that all patients received ustekinumab for 52 weeks. At the end of 52 weeks of ustekinumab treatment, there was no change in AVI compared with baseline, inflammatory markers were reduced, and there were increases in selected measures of lipids and leptin. These results show that blockade of IL-12 and/or IL-23 may transiently reduce AVI, with more durable reduction in inflammatory cytokines associated with cardiovascular disease.
There have been several endeavors made to investigate the potential role of 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography (FDG-PET) (and tracers) and PET-computed tomography imaging in various benign disorders, particularly those related to thoracic structures. These various conditions can be broadly categorized into three groups: (a) infectious diseases (mycobacterial, fungal, bacterial infection), (b) active granulomatous disease such as sarcoidosis, and (c) other non-infectious/inflammatory conditions or proliferative disorders (e.g., radiation pneumonitis, post-lung transplant lymphoproliferative disorders, occupational pleuropulmonary complications, and post-surgical conditions), all of which can demonstrate varying degrees of FDG uptake on PET scans based upon the degree of inflammatory activity. This article reviews the current state of this very important application of FDG-PET imaging.
Purpose The human arterial wall is smaller than the spatial resolution of current positron emission tomographs. Therefore, partial volume effects should be considered when quantifying arterial wall 18 F-FDG uptake. We evaluated the impact of a novel method for partial volume effect (PVE) correction with contrast-enhanced CT (CECT) assistance on quantification of arterial wall 18 F-FDG uptake at different imaging timepoints. Methods Ten subjects were assessed by CECT imaging and dual time-point PET/CT imaging at approximately 60 and 180 min after 18 F-FDG administration. For both time-points, uptake of 18 F-FDG was determined in the aortic wall by calculating the blood pool-corrected maximum standardized uptake value (cSUV MAX ) and cSUV MEAN
Assessing joint disorders has been a relatively recent and evolving application of 18F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) imaging. FDG is taken up by inflammatory cells, particularly when they are active as part of an ongoing inflammatory process. Hence FDG PET has been employed to assess a wide array of arthritic disorders. FDG PET imaging has been investigated in various joint diseases for diagnostic purposes, treatment monitoring, and as a prognostic indicator as in other disorders. In some of the diseases the ancillary findings in FDG PET have provided important clues about the underlying pathophysiology and pathogenesis processes. While substantial promise has been demonstrated in a number of studies, it is clear that the potential utility of PET in this clinical realm far outweighs that which has been established to date.
Multislice cardiac CT characterizes late stage macrocalcification in epicardial arteries as opposed to PET/CT, which mirrors early phase arterial wall changes in epicardial and transmural coronary arteries. With regard to tracer, there has been a shift from using mainly 18F-fluorodeoxyglucose (FDG), indicating inflammation, to applying predominantly 18F-sodium fluoride (NaF) due to its high affinity for arterial wall microcalcification and more consistent association with cardiovascular risk factors. To make NaF-PET/CT an indispensable adjunct to clinical assessment of cardiac atherosclerosis, the Alavi–Carlsen Calcification Score (ACCS) has been proposed. It constitutes a global assessment of cardiac atherosclerosis burden in the individual patient, supported by an artificial intelligence (AI)-based approach for fast observer-independent segmentation. Common measures for characterizing epicardial coronary atherosclerosis by NaF-PET/CT as the maximum standardized uptake value (SUV) or target-to-background ratio are more versatile, error prone, and less reproducible than the ACCS, which equals the average cardiac SUV. The AI-based approach ensures a quick and easy delineation of the entire heart in 3D to obtain the ACCS expressing ongoing global cardiac atherosclerosis, even before it gives rise to CT-detectable coronary calcification. The quantification of global cardiac atherosclerotic burden by the ACCS is suited for management triage and monitoring of disease progression with and without intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.