The movement of the triple contact line plays a crucial role in many applications such as ink-jet printing, liquid coating and drainage (imbibition) in porous media. To design accurate computational tools for these applications, predictive models of the moving contact line are needed. However, the basic mechanisms responsible for movement of the triple contact line are not well understood but still debated. We investigate the movement of the contact line between water, vapour and a silica-like solid surface under steady conditions in low capillary number regime. We use molecular dynamics (MD) with an atomistic water model to simulate a nanoscopic drop between two moving plates. We include hydrogen bonding between the water molecules and the solid substrate, which leads to a sub-molecular slip length. We benchmark two continuum methods, the Cahn–Hilliard phase-field (PF) model and a volume-of-fluid (VOF) model, against MD results. We show that both continuum models reproduce the statistical measures obtained from MD reasonably well, with a trade-off in accuracy. We demonstrate the importance of the phase-field mobility parameter and the local slip length in accurately modelling the moving contact line.
A range of optimization cases of two-dimensional Stefan problems, solved using a tracking-type cost-functional, is presented. A level set method is used to capture the interface between the liquid and solid phases and an immersed boundary (cut cell) method coupled with an implicit time-advancement scheme is employed to solve the heat equation. A conservative implicit-explicit scheme is then used for solving the level set transport equation. The resulting numerical framework is validated with respect to existing analytical solutions of the forward Stefan problem. An adjoint-based algorithm is then employed to efficiently compute the gradient used in the optimisation algorithm (L-BFGS). The algorithm follows a continuous adjoint framework, where adjoint equations are formally derived using shape calculus and transport theorems. A wide range of control objectives are presented, and the results show that using parameterised boundary actuation leads to effective control strategies in order to suppress interfacial instabilities or to maintain a desired crystal shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.