Truck platooning can potentially make road freight transportation safer and greener. Technological readiness, business opportunities, and acceptance of truck platooning have mainly been studied for multilane highways with ample truck volumes. Less is known about truck platooning in areas with low traffic volumes and challenging roads and weather conditions. This paper investigates the opportunities and barriers for truck platooning on Norwegian rural freight routes, through stakeholder interviews and realistic case examples. Given modest freight volumes, dispersed industry clusters, and challenging road conditions, this study identified several prerequisites to deploying platooning and achieving economic savings. The paper discusses the future steps required to organize platooning across carriers, ensure appropriate infrastructure, and gain acceptance among truck drivers, motorists, and other road users.
Many modern vehicles collect inter-vehicle distance data from radar sensors as input to driver assistance systems. However, vehicle manufacturers often use proprietary algorithms to conceal the collected data, making them inaccessible to external individuals, such as researchers. Aftermarket sensors may circumvent this issue. This study investigated the use of low-cost radar sensors to determine inter-vehicle distances during real-world semi-automated truck platooning on two-way, two-lane rural roads. Radar data from the two follower trucks in a three-truck platoon were collected, synchronized and filtered. The sensors measured distance, relative velocity and signal-to-noise ratio. Dashboard camera footage was collected, coded and synchronized to the radar data, providing context about the driving situation, such as oncoming trucks, roundabouts and tunnels. The sensors had different configuration parameters, suggested by the supplier, to avoid signal interference. With parameters as chosen, sensor ranges, inferred from maximum distance measurements, were approximately 74 and 71 m. These values were almost on par with theoretical calculations. The sensors captured the preceding truck for 83–85% of the time where they had the preceding truck within range, and 95–96% of the time in tunnels. While roundabouts are problematic, the sensors are feasible for collecting inter-vehicle distance data during truck platooning.
On highways, truck platooning may reduce fuel consumption, improve road safety and streamline trucking operations. However, most roads worldwide are two-way, two-lane rural roads, i.e., conditions for which truck platooning should be tested to explore the extent of those advantages. This paper reports findings from a field study undertaken in Northern Norway, testing a platoon of three semi-automated trucks on rural roads with tunnels, mountain passes and adverse geometries. Fleet management and distance data, videos, interviews and conversations between participants were used to assess whether platooning was feasible on such roads. The platooning system was used without interventions through most road conditions, and worked well on flat and wide roads with 90 km/h speed limits. However, it struggled in sharp horizontal curves, where the following trucks would speed up before regaining connection to their preceding truck and then brake abruptly to regain the prescribed distance. Moreover, steep uphills were problematic due to inconsistent gear shifting between the trucks. Seemingly, no fuel savings were achieved, due to excessive following distances and suboptimal speed profiles on crest curves. To obtain further insights into the benefits of truck platooning on rural roads, we suggest redoing the field study with V2V-communication, allowing for shorter following distances, and also performing a manual-driven baseline first.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.