We consider the problem of covariance estimation for replicated space-time processes from the functional data analysis perspective. Due to the challenges to computational and statistical efficiency posed by the dimensionality of the problem, common paradigms in the space-time processes literature typically adopt parametric models, invariances, and/or separability. Replicated outcomes may allow one to do away with parametric specifications, but considerations of statistical and computational efficiency often compel the use of separability, even though the assumption may fail in practice. In this paper, we consider the problem of non-parametric covariance estimation, under "local" departures from separability. Specifically, we consider a setting where the underlying random field's second order structure is nearly separable, in that it may fail to be separable only locally (either due to noise contamination or due to the presence of a non-separable short-range dependent signal component). That is, the covariance is an additive perturbation of a separable component by a non-separable but banded component. We introduce non-parametric estimators hinging on the novel concept of shifted partial tracing, which is capable of estimating the model computationally efficiently under dense observation. Due to the denoising properties of shifted partial tracing, our methods are shown to yield consistent estimators of the separable part of the covariance even under noisy discrete observation, without the need for smoothing. Further to deriving the convergence rates and limit theorems, we also show that the implementation of our estimators, including for the purpose of prediction, comes at no computational overhead relative to a separable model. Finally, we demonstrate empirical performance and computational feasibility of our methods in an extensive simulation study and on a real data set.
The nonparametric estimation of covariance lies at the heart of functional data analysis, whether for curve or surface-valued data. The case of a two-dimensional domain poses both statistical and computational challenges, which are typically alleviated by assuming separability. However, separability is often questionable, sometimes even demonstrably inadequate. We propose a framework for the analysis of covariance operators of random surfaces that generalizes separability, while retaining its major advantages. Our approach is based on the expansion of the covariance into a series of separable terms. The expansion is valid for any covariance over a two-dimensional domain. Leveraging the key notion of the partial inner product, we generalize the power iteration method to general Hilbert spaces and show how the aforementioned expansion can be efficiently constructed in practice at the level of the surface observations. Truncation of the expansion and retention of the leading terms automatically induces a nonparametric estimator of the covariance, whose parsimony is dictated by the truncation level. The resulting estimator can be calculated, stored and manipulated with little computational overhead relative to separability. Consistency and rates of convergence are derived under mild regularity assumptions, illustrating the trade-off between bias and variance regulated by the truncation level. The merits and practical performance of the proposed methodology are demonstrated in a comprehensive simulation study.
Non-parametric inference for functional data over two-dimensional domains entails additional computational and statistical challenges, compared to the one-dimensional case. Separability of the covariance is commonly assumed to address these issues in the densely observed regime. Instead, we consider the sparse regime, where the latent surfaces are observed only at few irregular locations with additive measurement error, and propose an estimator of covariance based on local linear smoothers. Consequently, the assumption of separability reduces the intrinsically four-dimensional smoothing problem into several two-dimensional smoothers and allows the proposed estimator to retain the classical minimax-optimal convergence rate for two-dimensional smoothers. Even when separability fails to hold, imposing it can be still advantageous as a form of regularization. A simulation study reveals a favorable bias-variance trade-off and massive speed-ups achieved by our approach. Finally, the proposed methodology is used for qualitative analysis of implied volatility surfaces corresponding to call options, and for prediction of the latent surfaces based on information from the entire data set, allowing for uncertainty quantification. Our cross-validated out-of-sample quantitative results show that the proposed methodology outperforms the common approach of pre-smoothing every implied volatility surface separately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.