The advanced development of additive technologies over the past years led to the fact that parts made by these technologies have been increasingly used in the most diverse engineering applications. One of the most famous and the most applied additive technology is 3D printing. In this paper the influence of the material type on the operational characteristics of spur gears manufactured by the 3D printing technology is analyzed, after the experimental testing performed on a back to back gear test rig, in the predefined laboratory conditions.
Increasing of electric vehicles volume brings new challenges in NVH (noise, vibration and harshness) area. Presented paper deals with comparison of simulations of rubber-metal motor mount using finite element method. For the future work it is important to define static characteristics of rubber-metal mounts. It leads to study possibilities of simulations of rubber-metal mount in different software environment. Preparing of computational models are realized in MSC Marc and MSC Nastran. Results from simulations are compared to Abaqus simulation results.
This paper deals with the possibility of creating a vehicle model using a hierarchy of neural networks. Based on this model, it is possible to build an optimization cycle that looks for parameters which are influencing the driving of vehicles along given path. The given path must include a driving through the town, out of town and along the highway section, so the test track contains the greatest number of driving modes. Data for neural network are obtained from the CAN bus and the GPS sensor. Based on the built model and given route it is looking for such route drive, where it eventually came that the development of fuel consumption is lower than in unoptimized drive.
The paper deals with the modelling of a passenger car seat suspension system. Currently, vehicle safety and ride comfort are one of the most important factors of vehicle design. This article analyses a mathematical model of the passenger car seat suspension system. Furthermore, experimental measurements of the passenger car seat suspension system are performed. Utilizing the experimental data, model parameters are identified. From the chosen mathematical model a simulation model in constructed in Matlab is designed. In this simulation, the force-velocity and force-displacement characteristics of the passenger car seat suspension system are described. Finally, evaluation of simulated damper characteristics with the characteristics form measured data are performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.