The implant-host interface is a critical element in guiding tissue or organ regeneration. We previously developed hydrogels comprising interpenetrating networks of recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) as substitutes for the corneal extracellular matrix that promote endogenous regeneration of corneal tissue. To render them functional for clinical application, we have now optimized their composition and thereby enhanced their mechanical properties. We have demonstrated that such optimized RHCIII-MPC hydrogels are suitable for precision femtosecond laser cutting to produce complementing implants and host surgical beds for subsequent tissue welding. This avoids the tissue damage and inflammation associated with manual surgical techniques, thereby leading to more efficient healing. Although we previously demonstrated in clinical testing that RHCIII-based implants stimulated cornea regeneration in patients, the rate of epithelial cell coverage of the implants needs improvement, e.g. modification of the implant surface. We now show that our 500μm thick RHCIII-MPC constructs comprising over 85% water are suitable for microcontact printing with fibronectin. The resulting fibronectin micropatterns promote cell adhesion, unlike the bare RHCIII-MPC hydrogel. Interestingly, a pattern of 30μm wide fibronectin stripes enhanced cell attachment and showed the highest mitotic rates, an effect that potentially can be utilized for faster integration of the implant. We have therefore shown that laboratory-produced mimics of naturally occurring collagen and phospholipids can be fabricated into robust hydrogels that can be laser profiled and patterned to enhance their potential function as artificial substitutes of donor human corneas.
The DNA Curtains assay is a recently developed experimental platform for protein−DNA interaction studies at the single-molecule level that is based on anchoring and alignment of DNA fragments. The DNA Curtains so far have been made by using chromium barriers and fluid lipid bilayer membranes, which makes such a specialized assay technically challenging and relatively unstable. Herein, we report on an alternative strategy for DNA arraying for analysis of individual DNA−protein interactions. It relies on stable DNA tethering onto nanopatterned protein templates via high affinity molecular recognition. We describe fabrication of streptavidin templates (line features as narrow as 200 nm) onto modified glass coverslips by combining surface chemistry, atomic force microscopy (AFM), and soft lithography techniques with affinity-driven assembly. We have employed such chips for arraying single-and double-tethered DNA strands, and we characterized the obtained molecular architecture: we evaluated the structural characteristics and specific versus nonspecific binding of fluorescence-labeled DNA using AFM and total internal reflection fluorescence microscopy. We demonstrate the feasibility of our DNA molecule arrays for short single-tethered as well as for lambda single-and double-tethered DNA. The latter type of arrays proved very suitable for localization of single DNA−protein interactions employing restriction endonucleases. The presented molecular architecture and facile method of fabrication of our nanoscale platform does not require clean room equipment, and it offers advanced functional studies of DNA machineries and the development of future nanodevices.
We describe herein a platform to study protein-protein interactions and to form functional protein complexes in nanoscopic surface domains. For this purpose, we employed multivalent chelator (MCh) templates, which were fabricated in a stepwise procedure combining dip-pen nanolithography (DPN) and molecular recognition-directed assembly. First, we demonstrated that an atomic force microscope (AFM) tip inked with an oligo(ethylene glycol) (OEG) disulfide compound bearing terminal biotin groups can be used to generate biotin patterns on gold achieving line widths below 100 nm, a generic platform for fabrication of functional nanostructures via the highly specific biotin-streptavidin recognition. Subsequently, we converted such biotin/streptavidin patterns into functional MCh patterns for reversible assembly of histidine-tagged (His-tagged) proteins via the attachment of a tris-nitriloacetic acid (trisNTA) biotin derivative. Fluorescence microscopy confirmed reversible immobilization of the receptor subunit ifnar2-His10 and its interaction with interferon-alpha2 labeled with fluorescent quantum dots in a 7 x 7 dot array consisting of trisNTA spots with a diameter of approximately 230 nm. Moreover, we carried out characterization of the specificity, stability, and reversibility as well as quantitative real-time analysis of protein-protein interactions at the fabricated nanopatterns by imaging surface plasmon resonance. Our work offers a route for construction and analysis of functional protein-based nanoarchitectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.